Fllink实时计算运用Flink 自定义序列化Protobuf接入实现方案
Posted mirson
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Fllink实时计算运用Flink 自定义序列化Protobuf接入实现方案相关的知识,希望对你有一定的参考价值。
1. 自定义序列化接入方案(Protobuf)
在实际应用场景中, 会存在各种复杂传输对象,同时要求较高的传输处理性能, 这就需要采用自定义的序列化方式做相应实现, 这里以Protobuf为例做讲解。
功能: kafka对同一Topic的生产与消费,采用Protobuf做序列化与反序列化传输, 验证能否正常解析数据。
通过protobuf脚本生成JAVA文件
syntax = "proto3"; option java_package = "com.itcast.flink.connectors.kafka.proto"; option java_outer_classname = "AccessLogProto"; // 消息结构定义 message AccessLog { string ip = 1; string time = 2; string type = 3; string api = 4; string num = 5; }
通过批处理脚本,生成JAVA文件:
@echo off
for %%i in (proto/*.proto) do (
d:/TestCode/protoc.exe --proto_path=./proto --java_out=../java ./proto/%%i
echo generate %%i to java file successfully!
)
注意, 路径要配置正确。
自定义序列化实现
添加POM依赖:
<dependencies> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-kafka_2.11</artifactId> <version>1.11.2</version> </dependency> <dependency> <groupId>com.google.protobuf</groupId> <artifactId>protobuf-java</artifactId> <version>3.8.0</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-beans</artifactId> <version>5.1.8.RELEASE</version> </dependency> </dependencies>
AccessLog对象:
@Data
public class AccessLog implements Serializable {
private String ip;
private String time;
private String type;
private String api;
private Integer num;
}
CustomSerialSchema:
/**
* 自定义序列化实现(Protobuf)
*/
public class CustomSerialSchema implements DeserializationSchema<AccessLog>, SerializationSchema<AccessLog> {
private static final long serialVersionUID = 1L;
private transient Charset charset;
public CustomSerialSchema() {
this(StandardCharsets.UTF_8);
}
public CustomSerialSchema(Charset charset) {
this.charset = checkNotNull(charset);
}
public Charset getCharset() {
return charset;
}
/**
* 反序列化实现
* @param message
* @return
*/
@Override
public AccessLog deserialize(byte[] message) {
AccessLog accessLog = null;
try {
AccessLogProto.AccessLog accessLogProto = AccessLogProto.AccessLog.parseFrom(message);
accessLog = new AccessLog();
BeanUtils.copyProperties(accessLogProto, accessLog);
return accessLog;
} catch (Exception e) {
e.printStackTrace();
}
return accessLog;
}
@Override
public boolean isEndOfStream(AccessLog nextElement) {
return false;
}
/**
* 序列化处理
* @param element
* @return
*/
@Override
public byte[] serialize(AccessLog element) {
AccessLogProto.AccessLog.Builder builder = AccessLogProto.AccessLog.newBuilder();
BeanUtils.copyProperties(element, builder);
return builder.build().toByteArray();
}
/**
* 定义消息类型
* @return
*/
@Override
public TypeInformation<AccessLog> getProducedType() {
return TypeInformation.of(AccessLog.class);
}
}
通过flink对kafka消息生产者的实现
public class KafkaSinkApplication { public static void main(String[] args) throws Exception { // 1. 创建运行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 2. 读取Socket数据源 DataStreamSource<String> socketStr = env.socketTextStream("localhost", 9911, "\\n"); // 3. 转换处理流数据 SingleOutputStreamOperator<AccessLog> outputStream = socketStr.map(new MapFunction<String, AccessLog>() { @Override public AccessLog map(String value) throws Exception { System.out.println(value); // 根据分隔符解析数据 String[] arrValue = value.split("\\t"); // 将数据组装为对象 AccessLog log = new AccessLog(); log.setNum(1); for(int i=0; i<arrValue.length; i++) { if(i == 0) { log.setIp(arrValue[i]); }else if( i== 1) { log.setTime(arrValue[i]); }else if( i== 2) { log.setType(arrValue[i]); }else if( i== 3) { log.setApi(arrValue[i]); } } return log; } }); // 3. Kakfa的生产者配置 Properties properties = new Properties(); properties.setProperty("bootstrap.servers", "10.10.20.132:9092"); FlinkKafkaProducer kafkaProducer = new FlinkKafkaProducer( "10.10.20.132:9092", // broker 列表 "flink-serial", // 目标 topic new CustomSerialSchema() // 序列化 方式 ); // 4. 添加kafka的写入器 outputStream.addSink(kafkaProducer); socketStr.print().setParallelism(1); // 5. 执行任务 env.execute("job"); } }
开启Kafka消费者命令行终端,验证生产者的可用性:
[root@flink1 kafka_2.12-1.1.1]# bin/kafka-console-consumer.sh --bootstrap-server 10.10.20.132:9092 --topic flink-serial
1601649380422GET"
getAccount
1601649381422POSTaddOrder
1601649382422POST"
通过flink对kafka消息订阅者的实现
public class KafkaSourceApplication { public static void main(String[] args) throws Exception { // 1. 创建运行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 2. 设置kafka服务连接信息 Properties properties = new Properties(); properties.setProperty("bootstrap.servers", "10.10.20.132:9092"); properties.setProperty("group.id", "fink_group"); // 3. 创建Kafka消费端 FlinkKafkaConsumer kafkaProducer = new FlinkKafkaConsumer( "flink-serial", // 目标 topic new CustomSerialSchema(), // 自定义序列化 properties); // 4. 读取Kafka数据源 DataStreamSource<AccessLog> socketStr = env.addSource(kafkaProducer); socketStr.print().setParallelism(1); // 5. 执行任务 env.execute("job"); } }
通过flink的kafka生产者消息的发送, 对消费者的功能做测试验证。
本文由mirson创作分享,如需进一步交流,请加QQ群:19310171或访问www.softart.cn
以上是关于Fllink实时计算运用Flink 自定义序列化Protobuf接入实现方案的主要内容,如果未能解决你的问题,请参考以下文章
Fllink实时计算运用Flink Table API & SQL 深入详解