Python 深度学习6:PyTorch 卷积神经网络

Posted Gendan

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python 深度学习6:PyTorch 卷积神经网络相关的知识,希望对你有一定的参考价值。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader

下载训练集

train_dataset = datasets.MNIST(root=\'./\',

                           train=True,
                           transform=transforms.ToTensor(),
                           download=True)

下载测试集

test_dataset = datasets.MNIST(root=\'./\',

                          train=False,
                          transform=transforms.ToTensor(),
                          download=True)

批次大小

batch_size = 64

装载训练集

train_loader = DataLoader(dataset=train_dataset,

                      batch_size=batch_size,
                      shuffle=True)

装载测试集

test_loader = DataLoader(dataset=test_dataset,

                     batch_size=batch_size,
                     shuffle=True)

for i, data in enumerate(train_loader):

# 获得数据和对应的标签
inputs, labels = data
print(inputs.shape)
print(labels.shape)
break

定义网络结构

class Net(nn.Module):

def __init__(self):
    super(Net, self).__init__()
    # 卷积层1
    # Conv2d 参数1:[金属期货](https://www.gendan5.com/cf/mf.html)输入通道数,黑白图片为1,彩色为3 参数2:输出通道数,生成32个特征图 参数3:5*5卷积窗口 参数4:步长1 参数5:padding补2圈0(3*3卷积窗口填充1圈0,5*5填充2圈0)
    # 使用ReLU激活函数 池化窗口大小2*2,步长2
    self.conv1 = nn.Sequential(nn.Conv2d(1, 32, 5, 1, 2), nn.ReLU(), nn.MaxPool2d(2, 2))
    # 卷积层2 输入32个特征图 输出64个特征图
    self.conv2 = nn.Sequential(nn.Conv2d(32, 64, 5, 1, 2), nn.ReLU(), nn.MaxPool2d(2, 2))
    # 全连接层1 输入64*7*7(原先为28,每次池化/2),1000
    self.fc1 = nn.Sequential(nn.Linear(64 * 7 * 7, 1000), nn.Dropout(p=0.4), nn.ReLU())
    # 全连接层2 输出10个分类,并转化为概率
    self.fc2 = nn.Sequential(nn.Linear(1000, 10), nn.Softmax(dim=1))
def forward(self, x):
    # 卷积层使用4维的数据
    # 批次数量64 黑白1 图片大小28*28
    # ([64, 1, 28, 28])
    x = self.conv1(x)
    x = self.conv2(x)
    # 全连接层对2维数据进行计算
    x = x.view(x.size()[0], -1)
    x = self.fc1(x)
    x = self.fc2(x)
    return x

LR = 0.0003

定义模型

model = Net()

定义代价函数

entropy_loss = nn.CrossEntropyLoss()

定义优化器

optimizer = optim.Adam(model.parameters(), LR)
def train():

model.train()
for i, data in enumerate(train_loader):
    # 获得数据和对应的标签
    inputs, labels = data
    # 获得模型预测结果,(64,10)
    out = model(inputs)
    # 交叉熵代价函数out(batch,C),labels(batch)
    loss = entropy_loss(out, labels)
    # 梯度清0
    optimizer.zero_grad()
    # 计算梯度
    loss.backward()
    # 修改权值
    optimizer.step()

def test():

model.eval()
correct = 0
for i, data in enumerate(test_loader):
    # 获得数据和对应的标签
    inputs, labels = data
    # 获得模型预测结果
    out = model(inputs)
    # 获得最大值,以及最大值所在的位置
    _, predicted = torch.max(out, 1)
    # 预测正确的数量
    correct += (predicted == labels).sum()
print("Test acc: {0}".format(correct.item() / len(test_dataset)))
correct = 0
for i, data in enumerate(train_loader):
    # 获得数据和对应的标签
    inputs, labels = data
    # 获得模型预测结果
    out = model(inputs)
    # 获得最大值,以及最大值所在的位置
    _, predicted = torch.max(out, 1)
    # 预测正确的数量
    correct += (predicted == labels).sum()
print("Train acc: {0}".format(correct.item() / len(train_dataset)))

for epoch in range(0, 10):

print(\'epoch:\', epoch)
train()
test()

以上是关于Python 深度学习6:PyTorch 卷积神经网络的主要内容,如果未能解决你的问题,请参考以下文章

深度学习:《PyTorch入门到项目实战》卷积神经网络:填充(padding)和步幅(stride)

3. 使用PyTorch深度学习库训练第一个卷积神经网络CNN

深度学习9 大主题卷积神经网络(CNN)的 PyTorch 实现

PyTorch深度学习实战 | 搭建卷积神经网络进行图像分类与图像风格迁移

《PyTorch深度学习实践8》——卷积神经网络(Convolution Neural Network)

深度学习理论与实战PyTorch实现