Python 深度学习6:PyTorch 卷积神经网络
Posted Gendan
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python 深度学习6:PyTorch 卷积神经网络相关的知识,希望对你有一定的参考价值。
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
下载训练集
train_dataset = datasets.MNIST(root=\'./\',
train=True,
transform=transforms.ToTensor(),
download=True)
下载测试集
test_dataset = datasets.MNIST(root=\'./\',
train=False,
transform=transforms.ToTensor(),
download=True)
批次大小
batch_size = 64
装载训练集
train_loader = DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
装载测试集
test_loader = DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=True)
for i, data in enumerate(train_loader):
# 获得数据和对应的标签
inputs, labels = data
print(inputs.shape)
print(labels.shape)
break
定义网络结构
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 卷积层1
# Conv2d 参数1:[金属期货](https://www.gendan5.com/cf/mf.html)输入通道数,黑白图片为1,彩色为3 参数2:输出通道数,生成32个特征图 参数3:5*5卷积窗口 参数4:步长1 参数5:padding补2圈0(3*3卷积窗口填充1圈0,5*5填充2圈0)
# 使用ReLU激活函数 池化窗口大小2*2,步长2
self.conv1 = nn.Sequential(nn.Conv2d(1, 32, 5, 1, 2), nn.ReLU(), nn.MaxPool2d(2, 2))
# 卷积层2 输入32个特征图 输出64个特征图
self.conv2 = nn.Sequential(nn.Conv2d(32, 64, 5, 1, 2), nn.ReLU(), nn.MaxPool2d(2, 2))
# 全连接层1 输入64*7*7(原先为28,每次池化/2),1000
self.fc1 = nn.Sequential(nn.Linear(64 * 7 * 7, 1000), nn.Dropout(p=0.4), nn.ReLU())
# 全连接层2 输出10个分类,并转化为概率
self.fc2 = nn.Sequential(nn.Linear(1000, 10), nn.Softmax(dim=1))
def forward(self, x):
# 卷积层使用4维的数据
# 批次数量64 黑白1 图片大小28*28
# ([64, 1, 28, 28])
x = self.conv1(x)
x = self.conv2(x)
# 全连接层对2维数据进行计算
x = x.view(x.size()[0], -1)
x = self.fc1(x)
x = self.fc2(x)
return x
LR = 0.0003
定义模型
model = Net()
定义代价函数
entropy_loss = nn.CrossEntropyLoss()
定义优化器
optimizer = optim.Adam(model.parameters(), LR)
def train():
model.train()
for i, data in enumerate(train_loader):
# 获得数据和对应的标签
inputs, labels = data
# 获得模型预测结果,(64,10)
out = model(inputs)
# 交叉熵代价函数out(batch,C),labels(batch)
loss = entropy_loss(out, labels)
# 梯度清0
optimizer.zero_grad()
# 计算梯度
loss.backward()
# 修改权值
optimizer.step()
def test():
model.eval()
correct = 0
for i, data in enumerate(test_loader):
# 获得数据和对应的标签
inputs, labels = data
# 获得模型预测结果
out = model(inputs)
# 获得最大值,以及最大值所在的位置
_, predicted = torch.max(out, 1)
# 预测正确的数量
correct += (predicted == labels).sum()
print("Test acc: {0}".format(correct.item() / len(test_dataset)))
correct = 0
for i, data in enumerate(train_loader):
# 获得数据和对应的标签
inputs, labels = data
# 获得模型预测结果
out = model(inputs)
# 获得最大值,以及最大值所在的位置
_, predicted = torch.max(out, 1)
# 预测正确的数量
correct += (predicted == labels).sum()
print("Train acc: {0}".format(correct.item() / len(train_dataset)))
for epoch in range(0, 10):
print(\'epoch:\', epoch)
train()
test()
以上是关于Python 深度学习6:PyTorch 卷积神经网络的主要内容,如果未能解决你的问题,请参考以下文章
深度学习:《PyTorch入门到项目实战》卷积神经网络:填充(padding)和步幅(stride)
3. 使用PyTorch深度学习库训练第一个卷积神经网络CNN
深度学习9 大主题卷积神经网络(CNN)的 PyTorch 实现
PyTorch深度学习实战 | 搭建卷积神经网络进行图像分类与图像风格迁移