package main
import (
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"encoding/base64"
"fmt"
"io"
)
func main() {
originalText := "encrypt this golang"
fmt.Println(originalText)
key := []byte("example key 1234")
// encrypt value to base64
cryptoText := encrypt(key, originalText)
fmt.Println(cryptoText)
// encrypt base64 crypto to original value
text := decrypt(key, cryptoText)
fmt.Printf(text)
}
// encrypt string to base64 crypto using AES
func encrypt(key []byte, text string) string {
// key := []byte(keyText)
plaintext := []byte(text)
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
ciphertext := make([]byte, aes.BlockSize+len(plaintext))
iv := ciphertext[:aes.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
panic(err)
}
stream := cipher.NewCFBEncrypter(block, iv)
stream.XORKeyStream(ciphertext[aes.BlockSize:], plaintext)
// convert to base64
return base64.URLEncoding.EncodeToString(ciphertext)
}
// decrypt from base64 to decrypted string
func decrypt(key []byte, cryptoText string) string {
ciphertext, _ := base64.URLEncoding.DecodeString(cryptoText)
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
if len(ciphertext) < aes.BlockSize {
panic("ciphertext too short")
}
iv := ciphertext[:aes.BlockSize]
ciphertext = ciphertext[aes.BlockSize:]
stream := cipher.NewCFBDecrypter(block, iv)
// XORKeyStream can work in-place if the two arguments are the same.
stream.XORKeyStream(ciphertext, ciphertext)
return fmt.Sprintf("%s", ciphertext)
}