r 为冲积图创建文件
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了r 为冲积图创建文件相关的知识,希望对你有一定的参考价值。
#!/usr/bin/env Rscript
args = commandArgs(trailingOnly=TRUE)
# test if there is at least one argument: if not, return an error
if (length(args) == 0) {
stop("At least one argument must be supplied (input file).n", call = FALSE)
} else if (length(args) == 1) {
# default output file
args[2] = "alluvial.tsv"
}
needed = c("tidyverse", "magrittr", "parallel")
is.installed <- function(pkg){
is.element(pkg, installed.packages()[,1])
}
if (!is.installed("crayon")){suppressMessages(install.packages("crayon"))}
suppressMessages(library(crayon))
missing_package <- FALSE
cat("\nChecking if all packages are installed...\n\n")
# For loop to run through each of the packages
for (p in 1:length(needed)){
if(is.installed(needed[p])){
cat(sprintf("%-10s: %s", needed[p], green("Installed\n")))
}else{
cat(sprintf("%-10s: %s", needed[p], red("Not installed\n")))
missing_package <- TRUE
}
}
quit_not_installed <- function(){
cat("\nMissing packages, please install them.\n")
quit(save = "no", status = 1)
}
if (missing_package) {
quit_not_installed()
}else{
cat("\nAll packages installed.\n")}
suppressMessages(library(tidyverse))
suppressMessages(library(magrittr))
suppressMessages(library(parallel))
ncores <- parallel::detectCores()/2
cat(paste0("\nReading file ", args[1], "..."))
suppressMessages(cl_tax_orfs <- read_tsv(args[1], col_names = TRUE) %>%
mutate(cl_name = as.character(cl_name)))
cat(green(" done\n\n"))
cat(paste("File", args[1], "has", nrow(cl_tax_orfs), "rows and", ncol(cl_tax_orfs), "columns\n\n"))
majority_vote <- function (x, seed = 12345) {
set.seed(seed)
whichMax <- function(x) {
m <- seq_along(x)[x == max(x, na.rm = TRUE)]
if (length(m) > 1)
sample(m, size = 1)
else m
}
x <- as.vector(x)
tab <- table(x)
m <- whichMax(tab)
out <- list(table = tab, ind = m, majority = names(tab)[m])
return(out)
}
# Analyse annotations -----------------------------------------------------
# cl_tax_orfs %>%
# group_by(cl_name, category) %>%
# count() %>%
# arrange(desc(n)) %>%
# group_by(category) %>%
# skimr::skim()
propagate_annotation <-function(X, data = data){
cls <- data %>%
dplyr::filter(cl_name == X)
consensus_superkingdom <- cls %>%
dplyr::filter(!is.na(superkingdom)) %>%
summarise(consensus_superkingdom = ifelse(n() < 1, NA, majority_vote(superkingdom)$majority)) %>% .$consensus_superkingdom
consensus_phylum <- cls %>%
dplyr::filter(superkingdom == consensus_superkingdom,
!is.na(phylum)) %>%
summarise(consensus_phylum = ifelse(n() < 1, paste(consensus_superkingdom, "NA", sep = "_"), majority_vote(phylum)$majority)) %>% .$consensus_phylum
consensus_class <- cls %>%
dplyr::filter(superkingdom == consensus_superkingdom,
phylum == consensus_phylum,
!is.na(class)) %>%
summarise(consensus_class = ifelse(n() < 1, paste(consensus_phylum, "NA", sep = "_"), majority_vote(class)$majority)) %>% .$consensus_class
consensus_order <- cls %>%
dplyr::filter(superkingdom == consensus_superkingdom,
phylum == consensus_phylum,
class == consensus_class,
!is.na(order)) %>%
summarise(consensus_order = ifelse(n() < 1, paste(consensus_class, "NA", sep = "_"), majority_vote(order)$majority)) %>% .$consensus_order
consensus_family <- cls %>%
dplyr::filter(superkingdom == consensus_superkingdom,
phylum == consensus_phylum,
class == consensus_class,
order == consensus_order,
!is.na(family)) %>%
summarise(consensus_family = ifelse(n() < 1, paste(consensus_order, "NA", sep = "_"), majority_vote(family)$majority)) %>% .$consensus_family
consensus_genus <- cls %>%
dplyr::filter(superkingdom == consensus_superkingdom,
phylum == consensus_phylum,
class == consensus_class,
order == consensus_order,
family == consensus_family,
!is.na(genus)) %>%
summarise(consensus_genus = ifelse(n() < 1, paste(consensus_family, "NA", sep = "_"), majority_vote(genus)$majority)) %>% .$consensus_genus
tibble(cl_name = X, consensus_superkingdom, consensus_phylum, consensus_class,
consensus_order, consensus_family, consensus_genus)
}
cat(paste("Propagating taxonomic annotations at cluster level using", cyan(ncores), "cores... "))
cl_tax_consensus <- mclapply(cl_tax_orfs$cl_name %>% unique(),
propagate_annotation, data = cl_tax_orfs, mc.cores = ncores) %>%
bind_rows()
tax_ranks <- c("consensus_superkingdom", "consensus_phylum", "consensus_class", "consensus_order", "consensus_family", "consensus_genus")
cat(green("done\n"))
# Quick look to the consensus annotations ---------------------------------
#map(tax_ranks, function(X){cl_tax_consensus %>% group_by_(X) %>% count(sort = TRUE) %>% ungroup()})
#cl_tax_consensus %>% filter(is.na(consensus_phylum))
# Write results -----------------------------------------------------------
# cl_tax_orfs %>%
# select(supercluster, cl_name) %>%
# inner_join(cl_tax_consensus %>% select(cl_name, consensus_class, consensus_phylum, consensus_superkingdom)) %>%
# write_tsv("~/Downloads/pr2alluvial.tsv")
# Annotate at the ORF level -----------------------------------------------
# Uses the data generated above
propagate_annotation_na <-function(X, data = data){
cls <- data[X,] %>%
select(genus, family, order, class, phylum, superkingdom, orf, cl_name, supercluster)
consensus_superkingdom <- cls %>%
summarise(consensus_superkingdom = ifelse(is.na(superkingdom), NA, superkingdom))%>% .$consensus_superkingdom
consensus_phylum <- cls %>%
summarise(consensus_phylum = ifelse(is.na(phylum), paste(consensus_superkingdom, "NA", sep = "_"), phylum)) %>% .$consensus_phylum
consensus_class <- cls %>%
summarise(consensus_class = ifelse(is.na(class), paste(consensus_phylum, "NA", sep = "_"), class)) %>% .$consensus_class
consensus_order <- cls %>%
summarise(consensus_order = ifelse(is.na(order), paste(consensus_class, "NA", sep = "_"), order)) %>% .$consensus_order
consensus_family <- cls %>%
summarise(consensus_family = ifelse(is.na(family), paste(consensus_order, "NA", sep = "_"), family)) %>% .$consensus_family
consensus_genus <- cls %>%
dplyr::filter(superkingdom == consensus_superkingdom,
phylum == consensus_phylum,
class == consensus_class,
order == consensus_order,
family == consensus_family,
!is.na(genus)) %>%
summarise(consensus_genus = ifelse(n() < 1, paste(consensus_family, "NA", sep = "_"), majority_vote(genus)$majority)) %>% .$consensus_genus
tibble(supercluster = cls$supercluster, orf = cls$orf, cl_name = cls$cl_name, consensus_superkingdom, consensus_phylum, consensus_class,
consensus_order, consensus_family, consensus_genus)
}
cat("Collecting consensus annotations... ")
pr_clusters_consensus <- cl_tax_orfs %>%
select(supercluster, cl_name) %>%
inner_join(cl_tax_consensus %>% select(cl_name, consensus_superkingdom, consensus_phylum, consensus_class, consensus_order, consensus_family, consensus_genus), by = "cl_name")
cat(green("done"),"\nCollecting ORFs with taxonomic annotations... ")
pr_clusters_no_na <- cl_tax_orfs %>%
filter(!(is.na(superkingdom) | is.na(phylum)))
cat(green("done"), "\nCollecting ORFs without taxonomic annotations... ")
cl_tax_consensus_na <- cl_tax_orfs %>%
filter(is.na(superkingdom) | is.na(phylum)) %>%
select(supercluster, cl_name, orf) %>%
unique() %>%
inner_join(pr_clusters_consensus %>% select(-supercluster), by = "cl_name") %>% unique()
cat(green("done"),"\nPropagating taxonomic annotations at the ORF level using", cyan(ncores), "cores... ")
cl_tax_consensus_no_na <- mclapply(1:nrow(pr_clusters_no_na),
propagate_annotation_na, data = pr_clusters_no_na, mc.cores = ncores) %>%
bind_rows()
cat(paste0(green("done"), "\nExporting data for alluvial plot drawing to file ", silver(args[2]), "... "))
bind_rows(cl_tax_consensus_no_na,
cl_tax_consensus_na) %>%
write_tsv(args[2])
cat(green("done\n"))
以上是关于r 为冲积图创建文件的主要内容,如果未能解决你的问题,请参考以下文章