c_cpp 用于计算CRC32和SHA1校验和的源代码

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了c_cpp 用于计算CRC32和SHA1校验和的源代码相关的知识,希望对你有一定的参考价值。

#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <openssl/sha.h>

#define BUF_LEN 0x100000

int main(int argc, char *argv[])
{
	unsigned char buf[BUF_LEN];
	int l, fd;
	SHA_CTX ctx;
	unsigned char sha1[SHA_DIGEST_LENGTH];

	if (argc < 2) {
		fprintf(stderr, "Usage: sha1openssl <file>\n");
		return 1;
	}
	SHA_Init(&ctx);
	fd = open(argv[1], O_RDONLY);
	while ((l = read(fd, buf, BUF_LEN)) > 0)
		SHA1_Update(&ctx, buf, l);
	SHA1_Final(sha1, &ctx);
	for (l = 0; l < SHA_DIGEST_LENGTH; ++l)
		printf("%x", sha1[l]);
	printf("  %s\n", argv[1]);
	close(fd);
	return 0;
}
/* lh3 note: it is slow */

/* This code is public-domain - it is based on libcrypt placed in the public domain by Wei Dai and other contributors. */

#include <string.h>
#include <stdint.h>

#define HASH_LENGTH 20
#define BLOCK_LENGTH 64

typedef struct sha1nfo {
	union { uint8_t b[BLOCK_LENGTH]; uint32_t w[BLOCK_LENGTH/4]; } buf;
	uint8_t bufOffset;
	union { uint8_t b[HASH_LENGTH]; uint32_t w[HASH_LENGTH/4]; } state;
	uint32_t byteCount;
	uint8_t keyBuffer[BLOCK_LENGTH];
	uint8_t innerHash[HASH_LENGTH];
} sha1nfo;

void sha1_init(sha1nfo *s)
{
	const uint8_t table[] = { 0x01,0x23,0x45,0x67, 0x89,0xab,0xcd,0xef, 0xfe,0xdc,0xba,0x98, 0x76,0x54,0x32,0x10, 0xf0,0xe1,0xd2,0xc3 };
	memcpy(s->state.b, table, HASH_LENGTH);
	s->byteCount = 0;
	s->bufOffset = 0;
}

#define rol32(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))

static void sha1_hashBlock(sha1nfo *s)
{
	uint32_t i, t, a = s->state.w[0], b = s->state.w[1], c = s->state.w[2], d = s->state.w[3], e = s->state.w[4];
	for (i = 0; i < 80; i++) {
		if (i >= 16) {
			t = s->buf.w[(i+13)&15] ^ s->buf.w[(i+8)&15] ^ s->buf.w[(i+2)&15] ^ s->buf.w[i&15];
			s->buf.w[i&15] = rol32(t, 1);
		}
		if (i < 20)      t = 0x5a827999 + (d ^ (b & (c ^ d)));
		else if (i < 40) t = 0x6ed9eba1 + (b ^ c ^ d);
		else if (i < 60) t = 0x8f1bbcdc + ((b & c) | (d & (b | c)));
		else             t = 0xca62c1d6 + (b ^ c ^ d);
		t += rol32(a, 5) + e + s->buf.w[i&15];
		e = d; d = c; c = rol32(b, 30); b = a; a = t;
	}
	s->state.w[0] += a; s->state.w[1] += b; s->state.w[2] += c; s->state.w[3] += d; s->state.w[4] += e;
}

static inline void sha1_add(sha1nfo *s, uint8_t data)
{
	s->buf.b[s->bufOffset ^ 3] = data;
	if (++s->bufOffset == BLOCK_LENGTH) {
		sha1_hashBlock(s);
		s->bufOffset = 0;
	}
}

inline void sha1_write1(sha1nfo *s, uint8_t data)
{
	++s->byteCount;
	sha1_add(s, data);
}

inline void sha1_write(sha1nfo *s, const char *data, size_t len)
{
	while (len--) sha1_write1(s, (uint8_t)*data++);
}

const uint8_t *sha1_final(sha1nfo *s)
{
	int i;
	sha1_add(s, 0x80);
	while (s->bufOffset != 56) sha1_add(s, 0);
	sha1_add(s, 0);
	sha1_add(s, 0);
	sha1_add(s, 0);
	sha1_add(s, s->byteCount >> 29);
	sha1_add(s, s->byteCount >> 21);
	sha1_add(s, s->byteCount >> 13);
	sha1_add(s, s->byteCount >> 5);
	sha1_add(s, s->byteCount << 3);
	for (i = 0; i < 5; ++i) {
		uint32_t a = s->state.w[i];
		s->state.w[i] = a<<24 | (a<<8&0x00ff0000) | (a>>8&0x0000ff00) | a>>24;
	}
	return s->state.b;
}

#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>

#define BUF_LEN 0x100000

int main(int argc, char *argv[])
{
	char buf[BUF_LEN];
	int l, fd;
	sha1nfo s;
	const uint8_t *sha1;

	if (argc < 2) {
		fprintf(stderr, "Usage: sha1oauth <file>\n");
		return 1;
	}
	sha1_init(&s);
	fd = open(argv[1], O_RDONLY);
	while ((l = read(fd, buf, BUF_LEN)) > 0)
		sha1_write(&s, buf, l);
	sha1 = sha1_final(&s);
	for (l = 0; l < HASH_LENGTH; ++l)
		printf("%x", sha1[l]);
	printf("  %s\n", argv[1]);
	close(fd);
	return 0;
}
/* from ghostscript; in public domain */

#include <stdio.h>
#include <stdint.h>
#include <string.h>

typedef struct {
    uint32_t state[5];
    uint32_t count[2];
    uint8_t  buffer[64];
} SHA1_CTX;

#define SHA1_DIGEST_SIZE 20

#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))

#ifdef WORDS_BIGENDIAN
#define blk0(i) block->l[i]
#else
#define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
    |(rol(block->l[i],8)&0x00FF00FF))
#endif
#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
    ^block->l[(i+2)&15]^block->l[i&15],1))

/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);

void SHA1_Transform(uint32_t state[5], const uint8_t buffer[64])
{
    uint32_t a, b, c, d, e;
    typedef union {
        uint8_t c[64];
        uint32_t l[16];
    } CHAR64LONG16;
    CHAR64LONG16* block;

    block = (CHAR64LONG16*)buffer;

    /* Copy context->state[] to working vars */
    a = state[0];
    b = state[1];
    c = state[2];
    d = state[3];
    e = state[4];

    /* 4 rounds of 20 operations each. Loop unrolled. */
    R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
    R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
    R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
    R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
    R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
    R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
    R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
    R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
    R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
    R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
    R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
    R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
    R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
    R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
    R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
    R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
    R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
    R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
    R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
    R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);

    /* Add the working vars back into context.state[] */
    state[0] += a;
    state[1] += b;
    state[2] += c;
    state[3] += d;
    state[4] += e;

    /* Wipe variables */
    a = b = c = d = e = 0;
}

/* SHA1Init - Initialize new context */
void SHA1_Init(SHA1_CTX* context)
{
    /* SHA1 initialization constants */
    context->state[0] = 0x67452301;
    context->state[1] = 0xEFCDAB89;
    context->state[2] = 0x98BADCFE;
    context->state[3] = 0x10325476;
    context->state[4] = 0xC3D2E1F0;
    context->count[0] = context->count[1] = 0;
}

/* Run your data through this. */
void SHA1_Update(SHA1_CTX* context, const uint8_t* data, const size_t len)
{
    size_t i, j;

    j = (context->count[0] >> 3) & 63;
    if ((context->count[0] += len << 3) < (len << 3)) context->count[1]++;
    context->count[1] += (len >> 29);
    if ((j + len) > 63) {
        memcpy(&context->buffer[j], data, (i = 64-j));
        SHA1_Transform(context->state, context->buffer);
        for ( ; i + 63 < len; i += 64) {
            SHA1_Transform(context->state, data + i);
        }
        j = 0;
    }
    else i = 0;
    memcpy(&context->buffer[j], &data[i], len - i);
}

/* Add padding and return the message digest. */
void SHA1_Final(SHA1_CTX* context, uint8_t digest[SHA1_DIGEST_SIZE])
{
    uint32_t i;
    uint8_t  finalcount[8];

    for (i = 0; i < 8; i++) {
        finalcount[i] = (unsigned char)((context->count[(i >= 4 ? 0 : 1)]
         >> ((3-(i & 3)) * 8) ) & 255);  /* Endian independent */
    }
    SHA1_Update(context, (uint8_t *)"\200", 1);
    while ((context->count[0] & 504) != 448) {
        SHA1_Update(context, (uint8_t *)"\0", 1);
    }
    SHA1_Update(context, finalcount, 8);  /* Should cause a SHA1_Transform() */
    for (i = 0; i < SHA1_DIGEST_SIZE; i++) {
        digest[i] = (uint8_t)
         ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
    }

    /* Wipe variables */
    i = 0;
    memset(context->buffer, 0, 64);
    memset(context->state, 0, 20);
    memset(context->count, 0, 8);
    memset(finalcount, 0, 8);	/* SWR */
}

#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>

#define BUF_LEN 0x100000

int main(int argc, char *argv[])
{
	unsigned char buf[BUF_LEN];
	int l, fd;
	SHA1_CTX ctx;
	unsigned char sha1[SHA1_DIGEST_SIZE];

	if (argc < 2) {
		fprintf(stderr, "Usage: sha1gs <file>\n");
		return 1;
	}
	SHA1_Init(&ctx);
	fd = open(argv[1], O_RDONLY);
	while ((l = read(fd, buf, BUF_LEN)) > 0)
		SHA1_Update(&ctx, buf, l);
	SHA1_Final(&ctx, sha1);
	for (l = 0; l < SHA1_DIGEST_SIZE; ++l)
		printf("%x", sha1[l]);
	printf("  %s\n", argv[1]);
	close(fd);
	return 0;
}
#include <zlib.h>
#include <fcntl.h>
#include <stdio.h>

#define BUF_LEN 0x100000

int main(int argc, char *argv[])
{
	uLong crc = crc32(0L, Z_NULL, 0);
	unsigned char buf[BUF_LEN];
	int l, fd;

	if (argc < 2) {
		fprintf(stderr, "Usage: crc32 <file>\n");
		return 1;
	}
	fd = open(argv[1], O_RDONLY);
	while ((l = read(fd, buf, BUF_LEN)) > 0)
		crc = crc32(crc, buf, l);
	printf("%lx  %s\n", (long)crc, argv[1]);
	close(fd);
	return 0;
}

以上是关于c_cpp 用于计算CRC32和SHA1校验和的源代码的主要内容,如果未能解决你的问题,请参考以下文章

Python计算校验文件的MD5SHA1SHA256和CRC32

计算 CRC16 校验和的函数

如何计算 string 的 crc32 值 ?

ZIP:Checksum

CRC32+大小与 MD5/SHA1

php crc32 计算字符串的 32 位 CRC(循环冗余校验)