c_cpp 递归二进制搜索树
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了c_cpp 递归二进制搜索树相关的知识,希望对你有一定的参考价值。
# define the C compiler to use
CC = g++
# define any compile-time flags
CFLAGS = -ggdb
# define the compile command by compiler and flags
CC_OPTIONS = $(CC) $(CFLAGS)
# define the C source files
SRCS = binary_search_tree.cpp main.cpp
# define the C object files
#
# This uses Suffix Replacement within a macro:
# $(name:string1=string2)
# For each word in 'name' replace 'string1' with 'string2'
# Below we are replacing the suffix .c of all words in the macro SRCS
# with the .o suffix
#
OBJS = $(SRCS:.cpp=.o)
# define the executable file
MAIN = BST
#
# The following part of the makefile is generic; it can be used to
# build any executable just by changing the definitions above and by
# deleting dependencies appended to the file from 'make depend'
#
all:$(MAIN)
@echo The $(MAIN) has been compiled!
$(MAIN):$(OBJS)
$(CC_OPTIONS) -o $@ $(OBJS)
# this is a suffix replacement rule for building .o's from .c's
# it uses automatic variables
# $<: the name of the prerequisite of the rule(a .c/cpp file)
# and $@: the name of the target of the rule (a .o file)
# (see the gnu make manual section about automatic variables)
#.c.o:
.cpp.o:
$(CC) $(CFLAGS) -c $< -o $@
clean:
$(RM) $(OBJS) $(MAIN)
# Original makefile
# ------------------------
#main:main.o binary_search_tree.o
# g++ -ggdb -o main main.o binary_search_tree.o
#main.o:main.cpp binary_search_tree.h
# g++ -ggdb -c main.cpp
#binary_search_tree.o:binary_search_tree.cpp
# g++ -ggdb -c binary_search_tree.cpp
#clean:
# rm main.o binary_search_tree.o main
#include "binary_search_tree.h"
#include <iostream>
int main(){
BinarySearchTree bst;
bst.insert(25);
bst.insert(15);
bst.insert(50);
bst.insert(10);
bst.insert(35);
bst.insert(22);
bst.insert(70);
bst.insert(90);
bst.insert(44);
bst.insert(12);
bst.insert(4);
bst.insert(18);
bst.insert(31);
bst.insert(66);
bst.insert(24);
std::cout << bst.find(22) << std::endl;
std::cout << bst.find(44) << std::endl;
std::cout << bst.find(77) << std::endl;
bst.preorderPrint();
bst.postorderPrint();
bst.inorderPrint();
// remove one node without child
bst.remove(18);
bst.inorderPrint();
// remove one node with two children
bst.remove(50);
bst.inorderPrint();
// remove one node with right child only
bst.remove(70);
bst.inorderPrint();
// remove one node without child
bst.remove(90);
bst.inorderPrint();
// remove one node with left child only
bst.remove(66);
bst.inorderPrint();
return 0;
}
class BinarySearchTree
{
private:
struct node
{
node* left;
node* right;
int data;
//constructor
node(int const &d):left(0), right(0), data(d){}
};
node* root;
bool lookup(node* n, int d);
int getMin(node* n);
int getMax(node* n);
node* add(node* n, int d);
void add(node** n, int d);
node* discard(node* n, int d);
bool discard(node** n, int d);
void inorder(node* n);
void preorder(node* n);
void postorder(node* n);
public:
BinarySearchTree():root(0)
{
};
~BinarySearchTree()
{
root = 0;
};
bool isEmpty() const { return root==0; };
bool find(int d);
void insert(int d);
bool remove(int d);
void inorderPrint();
void preorderPrint();
void postorderPrint();
};
#include <iostream>
#include <iomanip>
#include "binary_search_tree.h"
bool
BinarySearchTree::lookup(node* n, int d)
{
if(!n){
return false;
}
if(n->data == d){
return true;
}/*else if(d < n->data){
return lookup(n->left, d);
}else{
return lookup(n->right, d);
}
*/
return lookup((d < n->data)? n->left:n->right , d);
}
BinarySearchTree::node*
BinarySearchTree::add(node* n, int d)
{
if(!n){
n = new node(d);
return n;
}
if(d <= n->data){
n->left = add(n->left, d);
}else if(d > n->data){
n->right = add(n->right, d);
}
return n;
}
void
BinarySearchTree::add(node** n, int d)
{
if(!*n){
*n = new node(d);
return;
}
/*
if(d <= (*n)->data){
add(&((*n)->left), d);
}else if(d > (*n)->data){
add(&((*n)->right), d);
}
*/
add((d <= (*n)->data)? &((*n)->left):&((*n)->right), d);
}
int
BinarySearchTree::getMin(node *n)
{
while(n->left){
n = n->left;
}
return n->data;
}
int
BinarySearchTree::getMax(node *n)
{
while(n->right){
n = n->right;
}
return n->data;
}
BinarySearchTree::node*
BinarySearchTree::discard(node* n, int d)
{
if(!n){
return n;
}
if(d == n->data){
if(!n->left){ //node has only right child or no child
node* tmp = n->right;
delete n;
return tmp;
}else if(!n->right){ //node has only left child
node* tmp = n->left;
delete n;
return tmp;
}else{ //node has two children
n->data = getMin(n->right);
n->right = discard(n->right, n->data);
//n->data = getMax(n->left);
//n->left = discard(n->left, n->data);
}
}else if(d < n->data){
n->left = discard(n->left, d);
}else{
n->right = discard(n->right, d);
}
return n;
}
bool
BinarySearchTree::discard(node** n, int d)
{
if(!*n){
return false;
}
if(d == (*n)->data){
if(!(*n)->left){ //node has only right child or no child
node* tmp = *n;
*n = (*n)->right;
delete tmp;
return true;
}else if(!(*n)->right){ //node has only left child
node* tmp = *n;
*n = (*n)->left;
delete tmp;
return true;
}else{ //node has two children
(*n)->data = getMin((*n)->right);
return discard(&((*n)->right), (*n)->data);
//(*n)->data = getMax((*n)->left);
//return discard(&((*n)->left), (*n)->data);
}
}/*else if(d < (*n)->data){
return discard(&((*n)->left), d);
}else{
return discard(&((*n)->right), d);
}*/
return discard((d < (*n)->data)? &((*n)->left):&((*n)->right), d);
}
void
BinarySearchTree::inorder(node* n)
{
if(!n) return;
inorder(n->left);
std::cout << std::setw(4) << n->data;
inorder(n->right);
}
void
BinarySearchTree::preorder(node* n)
{
if(!n) return;
std::cout << std::setw(4) << n->data;
preorder(n->left);
preorder(n->right);
}
void
BinarySearchTree::postorder(node* n)
{
if(!n) return;
postorder(n->left);
postorder(n->right);
std::cout << std::setw(4) << n->data;
}
bool
BinarySearchTree::find(int d)
{
return lookup(root, d);
}
void
BinarySearchTree::insert(int d)
{
root = add(root, d);
//add(&root, d);
}
bool
BinarySearchTree::remove(int d)
{
return (discard(root, d) != 0);
//return discard(&root, d);
}
void
BinarySearchTree::inorderPrint()
{
inorder(root);
std::cout << std::endl;
}
void
BinarySearchTree::preorderPrint()
{
preorder(root);
std::cout << std::endl;
}
void
BinarySearchTree::postorderPrint()
{
postorder(root);
std::cout << std::endl;
}
以上是关于c_cpp 递归二进制搜索树的主要内容,如果未能解决你的问题,请参考以下文章