c_cpp 基于Caffe c ++批量预测
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了c_cpp 基于Caffe c ++批量预测相关的知识,希望对你有一定的参考价值。
#include "caffeclassifier.h"
CaffeClassifier::CaffeClassifier(const string& model_file,
const string& trained_file,
const string& mean_file,
const string& label_file,
const bool use_GPU,
const int batch_size) {
if (use_GPU)
Caffe::set_mode(Caffe::GPU);
else
Caffe::set_mode(Caffe::CPU);
/* Set batchsize */
batch_size_ = batch_size;
/* Load the network. */
net_.reset(new Net<float>(model_file, TEST));
net_->CopyTrainedLayersFrom(trained_file);
CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";
Blob<float>* input_layer = net_->input_blobs()[0];
num_channels_ = input_layer->channels();
CHECK(num_channels_ == 3 || num_channels_ == 1)
<< "Input layer should have 1 or 3 channels.";
input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
/* Load the binaryproto mean file. */
SetMean(mean_file);
/* Load labels. */
std::ifstream labels(label_file.c_str());
CHECK(labels) << "Unable to open labels file " << label_file;
string line;
while (std::getline(labels, line))
labels_.push_back(string(line));
Blob<float>* output_layer = net_->output_blobs()[0];
CHECK_EQ(labels_.size(), output_layer->channels())
<< "Number of labels is different from the output layer dimension.";
}
static bool PairCompare(const std::pair<float, int>& lhs,
const std::pair<float, int>& rhs) {
return lhs.first > rhs.first;
}
/* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
std::vector<std::pair<float, int> > pairs;
for (size_t i = 0; i < v.size(); ++i)
pairs.push_back(std::make_pair(v[i], i));
std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);
std::vector<int> result;
for (int i = 0; i < N; ++i)
result.push_back(pairs[i].second);
return result;
}
std::vector< vector<Prediction> > CaffeClassifier::ClassifyBatch(const vector< cv::Mat > imgs, int num_classes){
std::vector<float> output_batch = PredictBatch(imgs);
std::vector< std::vector<Prediction> > predictions;
for(int j = 0; j < imgs.size(); j++){
std::vector<float> output(output_batch.begin() + j*num_classes, output_batch.begin() + (j+1)*num_classes);
std::vector<int> maxN = Argmax(output, num_classes);
std::vector<Prediction> prediction_single;
for (int i = 0; i < num_classes; ++i) {
int idx = maxN[i];
prediction_single.push_back(std::make_pair(labels_[idx], output[idx]));
}
predictions.push_back(std::vector<Prediction>(prediction_single));
}
return predictions;
}
/* Load the mean file in binaryproto format. */
void CaffeClassifier::SetMean(const string& mean_file) {
BlobProto blob_proto;
ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
/* Convert from BlobProto to Blob<float> */
Blob<float> mean_blob;
mean_blob.FromProto(blob_proto);
CHECK_EQ(mean_blob.channels(), num_channels_)
<< "Number of channels of mean file doesn't match input layer.";
/* The format of the mean file is planar 32-bit float BGR or grayscale. */
std::vector<cv::Mat> channels;
float* data = mean_blob.mutable_cpu_data();
for (int i = 0; i < num_channels_; ++i) {
/* Extract an individual channel. */
cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
channels.push_back(channel);
data += mean_blob.height() * mean_blob.width();
}
/* Merge the separate channels into a single image. */
cv::Mat mean;
cv::merge(channels, mean);
/* Compute the global mean pixel value and create a mean image
* filled with this value. */
cv::Scalar channel_mean = cv::mean(mean);
mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}
std::vector< float > CaffeClassifier::PredictBatch(const vector< cv::Mat > imgs) {
Blob<float>* input_layer = net_->input_blobs()[0];
input_layer->Reshape(batch_size_, num_channels_,
input_geometry_.height,
input_geometry_.width);
/* Forward dimension change to all layers. */
net_->Reshape();
std::vector< std::vector<cv::Mat> > input_batch;
WrapBatchInputLayer(&input_batch);
PreprocessBatch(imgs, &input_batch);
net_->ForwardPrefilled();
/* Copy the output layer to a std::vector */
Blob<float>* output_layer = net_->output_blobs()[0];
const float* begin = output_layer->cpu_data();
const float* end = begin + output_layer->channels()*imgs.size();
return std::vector<float>(begin, end);
}
void CaffeClassifier::WrapBatchInputLayer(std::vector<std::vector<cv::Mat> > *input_batch){
Blob<float>* input_layer = net_->input_blobs()[0];
int width = input_layer->width();
int height = input_layer->height();
int num = input_layer->num();
float* input_data = input_layer->mutable_cpu_data();
for ( int j = 0; j < num; j++){
vector<cv::Mat> input_channels;
for (int i = 0; i < input_layer->channels(); ++i){
cv::Mat channel(height, width, CV_32FC1, input_data);
input_channels.push_back(channel);
input_data += width * height;
}
input_batch -> push_back(vector<cv::Mat>(input_channels));
}
cv::imshow("bla", input_batch->at(1).at(0));
cv::waitKey(1);
}
void CaffeClassifier::PreprocessBatch(const vector<cv::Mat> imgs,
std::vector< std::vector<cv::Mat> >* input_batch){
for (int i = 0 ; i < imgs.size(); i++){
cv::Mat img = imgs[i];
std::vector<cv::Mat> *input_channels = &(input_batch->at(i));
/* Convert the input image to the input image format of the network. */
cv::Mat sample;
if (img.channels() == 3 && num_channels_ == 1)
cv::cvtColor(img, sample, CV_BGR2GRAY);
else if (img.channels() == 4 && num_channels_ == 1)
cv::cvtColor(img, sample, CV_BGRA2GRAY);
else if (img.channels() == 4 && num_channels_ == 3)
cv::cvtColor(img, sample, CV_BGRA2BGR);
else if (img.channels() == 1 && num_channels_ == 3)
cv::cvtColor(img, sample, CV_GRAY2BGR);
else
sample = img;
cv::Mat sample_resized;
if (sample.size() != input_geometry_)
cv::resize(sample, sample_resized, input_geometry_);
else
sample_resized = sample;
cv::Mat sample_float;
if (num_channels_ == 3)
sample_resized.convertTo(sample_float, CV_32FC3);
else
sample_resized.convertTo(sample_float, CV_32FC1);
cv::Mat sample_normalized;
cv::subtract(sample_float, mean_, sample_normalized);
/* This operation will write the separate BGR planes directly to the
* input layer of the network because it is wrapped by the cv::Mat
* objects in input_channels. */
cv::split(sample_normalized, *input_channels);
// CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
// == net_->input_blobs()[0]->cpu_data())
// << "Input channels are not wrapping the input layer of the network.";
}
}
int CaffeClassifier::testClassifier() {
string model_file = CAFFE_MODEL_FILE;
string trained_file = CAFFE_MODEL_BIN;
string mean_file = CAFFE_MEAN_FILE;
string label_file = CAFFE_LABEL_FILE;
CaffeClassifier classifier(model_file, trained_file, mean_file, label_file, true, 1 );
cv::Mat img = cv::imread(CAFFE_EXP_IMG, -1);
std::cout << "---------- Prediction for "
<< CAFFE_EXP_IMG << " ----------" << std::endl;
CHECK(!img.empty()) << "Unable to decode image " << CAFFE_EXP_IMG;
std::vector<Prediction> predictions = classifier.Classify(img, 2);
std::cout << predictions.size() << std::endl;
/* Print the top N predictions. */
for (size_t i = 0; i < predictions.size(); ++i) {
Prediction p = predictions[i];
std::cout << std::fixed << std::setprecision(4) << p.second << " - \""
<< p.first << "\"" << std::endl;
}
}
以上是关于c_cpp 基于Caffe c ++批量预测的主要内容,如果未能解决你的问题,请参考以下文章