c_cpp 使用后缀数组查找最长公共前缀(LCP)。复杂性:SA = O(n.log(n)),LCP = O(n)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了c_cpp 使用后缀数组查找最长公共前缀(LCP)。复杂性:SA = O(n.log(n)),LCP = O(n)相关的知识,希望对你有一定的参考价值。
/*====================================================================
Title: Compute LCP from Suffix Array using Radix Sort
Suffix Array: O(n.log(n))
Compute LCP: O(n)
Author : Sudipto Chandra (Dipu)
=====================================================================*/
#include <bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a, b, sizeof(a))
#define loop(i, x) for(__typeof((x).begin()) i=(x).begin(); i!=(x).end(); ++i)
#define rloop(i, x) for(__typeof((x).rbegin()) i=(x).rbegin(); i!=(x).rend(); ++i)
/*------------------------------------------------------------------------------------*/
int test, cas = 1;
const int SIZ = 10000050; // maximum possible size
int n; // text length
char T[SIZ]; // text
int SA[SIZ], tempSA[SIZ]; // the sorted suffixes
int RA[SIZ], tempRA[SIZ]; // ranks of suffix array
int L[SIZ]; // used in counting sort
int Phi[SIZ]; // the jumping parameter
int LCP[SIZ]; // longest common prefix
int PLCP[SIZ]; // permuted longest common prefix
inline int getRA(int i)
{
return (i < n) ? RA[i] : 0;
}
void radix_sort(int k)
{
mem(L, 0);
// count frequencies
for(int i = 0; i < n; ++i)
{
L[getRA(i + k)]++;
}
// save first index of every characters
int mx = max(n, 130);
for(int i = 0, s = 0; i < mx; ++i)
{
int x = L[i];
L[i] = s;
s += x;
}
// build sorted tempSA
for(int i = 0; i < n; ++i)
{
int& x = L[getRA(SA[i] + k)];
tempSA[x++] = SA[i];
}
// copy tempSA to SA
for(int i = 0; i < n; ++i)
{
SA[i] = tempSA[i];
}
}
// text must ends with a $
void buildSA()
{
// initialize
n = strlen(T);
T[n++] = '$', T[n] = 0; // append $
for(int i = 0; i < n; ++i)
{
SA[i] = i;
RA[i] = T[i];
}
// algorithm loop
for(int k = 1; k < n; k <<= 1)
{
// sort by k-th ranks
radix_sort(k);
radix_sort(0);
// compute new ranks
tempRA[SA[0]] = 0;
for(int i = 1, r = 0; i < n; ++i)
{
if(getRA(SA[i-1]) != getRA(SA[i])) {
r++;
}
else if(getRA(SA[i-1]+k) != getRA(SA[i]+k)) {
r++;
}
tempRA[SA[i]] = r;
}
for(int i = 0; i < n; ++i)
{
RA[i] = tempRA[i];
}
if(RA[SA[n - 1]] == n - 1) break;
}
}
// Finds the Longest Common Prefix (LCP) between two adjacent suffixes
// excluding the first suffix using the Permuted LCP (PLCP) theorem.
void computeLCP()
{
Phi[SA[0]] = -1;
for(int i = 1; i < n; ++i)
{
Phi[SA[i]] = SA[i - 1];
}
for(int i = 0, L = 0; i < n; ++i)
{
if(Phi[i] == -1)
{
PLCP[i] = 0;
continue;
}
// longest common prefix length
L = max(L - 1, 0);
while(T[i + L] == T[Phi[i] + L])
{
L++;
}
PLCP[i] = L;
}
for(int i = 0; i < n; ++i)
{
LCP[i] = PLCP[SA[i]];
}
}
void TEST()
{
int values[] = {
10,
100,
1000,
10000,
50000,
100000,
500000,
1000000,
2000000,
3000000,
4000000,
5000000,
/*6000000,
7000000,
8000000*/
};
int siz = sizeof(values) / sizeof(int);
double avg_cpi = 0;
puts("");
puts("| n | Runtime(s) | TPI(ms) |");
puts("|----------:|:----------:|:------------:|");
for(int k = 0; k < siz; ++k)
{
int n = values[k];
for(int i = 0; i < n; ++i)
{
if(rand() & 1)
{
T[i] = 'A' + (rand() % 26);
}
else if(rand() & 1)
{
T[i] = 'a' + (rand() % 26);
}
else
{
T[i] = '0' + (rand() % 10);
}
}
T[n] = 0;
time_t start = clock();
buildSA(); // builds the suffix array
computeLCP(); // calculate longest common prefix
time_t stop = clock();
double time = (double)(stop - start) / CLOCKS_PER_SEC;
double cpi = (double)(stop - start) / (n * log2(n));
printf("| `%7d` | `%5.3f` | `%0.8f` |\n", n, time, cpi);
if(k) avg_cpi += (values[k] - values[k - 1]) * cpi;
else avg_cpi += values[k] * cpi;
}
avg_cpi /= values[siz - 1];
printf("\n**Average *Time Per Instructions*** = `%.10f ms`\n", avg_cpi);
}
void RUN()
{
/*
GATAGACA
abcabxabcd
*/
gets(T);
buildSA();
computeLCP();
puts("=============================================");
printf("| i | SA | Phi | PLCP | suffix | LCP |\n");
printf("|----|----|-----|------|--------------|-----|\n");
for(int i = 0; i < n; ++i)
{
printf("| %2d | %2d | %3d | %2d | %-12s | %3d |\n", i, SA[i], Phi[i], PLCP[i], T + i, LCP[i]);
}
puts("=============================================");
}
int main()
{
//RUN();
TEST();
return 0;
}
以上是关于c_cpp 使用后缀数组查找最长公共前缀(LCP)。复杂性:SA = O(n.log(n)),LCP = O(n)的主要内容,如果未能解决你的问题,请参考以下文章