c_cpp 快速排序的.cpp
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了c_cpp 快速排序的.cpp相关的知识,希望对你有一定的参考价值。
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序n个元素要O(nlogn)次比较。在最坏状况下则需要O(n^2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他O(nlogn)算法更快,因为它的内部循环可以在大部分的架构上很有效率地被实现出来。
快速排序使用分治策略(Divide and Conquer)来把一个序列分为两个子序列。步骤为:
从序列中挑出一个元素,作为"基准"(pivot).
把所有比基准值小的元素放在基准前面,所有比基准值大的元素放在基准的后面(相同的数可以到任一边),这个称为分区(partition)操作。
对每个分区递归地进行步骤1~2,递归的结束条件是序列的大小是0或1,这时整体已经被排好序了。
快速排序的代码如下:
复制代码
#include <stdio.h>
// 分类 ------------ 内部比较排序
// 数据结构 --------- 数组
// 最差时间复杂度 ---- 每次选取的基准都是最大(或最小)的元素,导致每次只划分出了一个分区,需要进行n-1次划分才能结束递归,时间复杂度为O(n^2)
// 最优时间复杂度 ---- 每次选取的基准都是中位数,这样每次都均匀的划分出两个分区,只需要logn次划分就能结束递归,时间复杂度为O(nlogn)
// 平均时间复杂度 ---- O(nlogn)
// 所需辅助空间 ------ 主要是递归造成的栈空间的使用(用来保存left和right等局部变量),取决于递归树的深度,一般为O(logn),最差为O(n)
// 稳定性 ---------- 不稳定
void Swap(int A[], int i, int j)
{
int temp = A[i];
A[i] = A[j];
A[j] = temp;
}
int Partition(int A[], int left, int right) // 划分函数
{
int pivot = A[right]; // 这里每次都选择最后一个元素作为基准
int tail = left - 1; // tail为小于基准的子数组最后一个元素的索引
for (int i = left; i < right; i++) // 遍历基准以外的其他元素
{
if (A[i] <= pivot) // 把小于等于基准的元素放到前一个子数组末尾
{
Swap(A, ++tail, i);
}
}
Swap(A, tail + 1, right); // 最后把基准放到前一个子数组的后边,剩下的子数组既是大于基准的子数组
// 该操作很有可能把后面元素的稳定性打乱,所以快速排序是不稳定的排序算法
return tail + 1; // 返回基准的索引
}
void QuickSort(int A[], int left, int right)
{
if (left >= right)
return;
int pivot_index = Partition(A, left, right); // 基准的索引
QuickSort(A, left, pivot_index - 1);
QuickSort(A, pivot_index + 1, right);
}
//另一种实现
void quickSort(int s[], int l, int r)
{
if(l<r)
{
int low=l; //左边第一个,因为第一个已经用pivot保存了
int high=r; //右边
int pivot = s[l]; //第一个,已被保存
while(low<high) //当左小于右,当相等的时候会跳出循环
{
while(low<high&&s[high]>= pivot) // 从右向左找第一个小于x的数
high--;
if(low<high)
s[low++] = s[high];
while(low<high&&s[low]<pivot) // 从左向右找第一个大于等于x的数
low++;
if(low<high)
s[high--] = s[low];
}
s[low]=pivot;
quickSort(s, l, low - 1); //low左边递归调用
quickSort(s, low + 1, r); //low右边递归调用
}
}
以上是关于c_cpp 快速排序的.cpp的主要内容,如果未能解决你的问题,请参考以下文章