c_cpp Dijsktra的算法

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了c_cpp Dijsktra的算法相关的知识,希望对你有一定的参考价值。

// A C++ program for Dijkstra's single source shortest path algorithm.
// The program is for adjacency matrix representation of the graph

#include <stdio.h>
#include <limits.h>

// Number of vertices in the graph
#define V 9

// A utility function to find the vertex with minimum distance value, from
// the set of vertices not yet included in shortest path tree
int minDistance(int dist[], bool sptSet[])
{
    // Initialize min value
    int min = INT_MAX, min_index;

    for (int v = 0; v < V; v++)
        if (sptSet[v] == false && dist[v] <= min)
            min = dist[v], min_index = v;

    return min_index;
}

// A utility function to print the constructed distance array
int printSolution(int dist[], int n)
{
    printf("Vertex Distance from Source\n");
    for (int i = 0; i < V; i++)
        printf("%d tt %d\n", i, dist[i]);
}

// Function that implements Dijkstra's single source shortest path algorithm
// for a graph represented using adjacency matrix representation
void dijkstra(int graph[V][V], int src)
{
    int dist[V]; // The output array. dist[i] will hold the shortest
        // distance from src to i

    bool sptSet[V]; // sptSet[i] will be true if vertex i is included in shortest
        // path tree or shortest distance from src to i is finalized

    // Initialize all distances as INFINITE and stpSet[] as false
    for (int i = 0; i < V; i++)
        dist[i] = INT_MAX, sptSet[i] = false;

    // Distance of source vertex from itself is always 0
    dist[src] = 0;

    // Find shortest path for all vertices
    for (int count = 0; count < V - 1; count++)
    {
        // Pick the minimum distance vertex from the set of vertices not
        // yet processed. u is always equal to src in the first iteration.
        int u = minDistance(dist, sptSet);

        // Mark the picked vertex as processed
        sptSet[u] = true;

        // Update dist value of the adjacent vertices of the picked vertex.
        for (int v = 0; v < V; v++)

            // Update dist[v] only if is not in sptSet, there is an edge from
            // u to v, and total weight of path from src to v through u is
            // smaller than current value of dist[v]
            if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX && dist[u] + graph[u][v] < dist[v])
                dist[v] = dist[u] + graph[u][v];
    }

    // print the constructed distance array
    printSolution(dist, V);
}

// driver program to test above function
int main()
{
    /* Let us create the example graph discussed above */
    int graph[V][V] = {{0, 4, 0, 0, 0, 0, 0, 8, 0},
                       {4, 0, 8, 0, 0, 0, 0, 11, 0},
                       {0, 8, 0, 7, 0, 4, 0, 0, 2},
                       {0, 0, 7, 0, 9, 14, 0, 0, 0},
                       {0, 0, 0, 9, 0, 10, 0, 0, 0},
                       {0, 0, 4, 14, 10, 0, 2, 0, 0},
                       {0, 0, 0, 0, 0, 2, 0, 1, 6},
                       {8, 11, 0, 0, 0, 0, 1, 0, 7},
                       {0, 0, 2, 0, 0, 0, 6, 7, 0}};

    dijkstra(graph, 0);

    return 0;
}
// C / C++ program for Dijkstra's shortest path algorithm for adjacency
// list representation of graph

#include <stdio.h>
#include <stdlib.h>
#include <limits.h>

// A structure to represent a node in adjacency list
struct AdjListNode
{
    int dest;
    int weight;
    struct AdjListNode *next;
};

// A structure to represent an adjacency liat
struct AdjList
{
    struct AdjListNode *head; // pointer to head node of list
};

// A structure to represent a graph. A graph is an array of adjacency lists.
// Size of array will be V (number of vertices in graph)
struct Graph
{
    int V;
    struct AdjList *array;
};

// A utility function to create a new adjacency list node
struct AdjListNode *newAdjListNode(int dest, int weight)
{
    struct AdjListNode *newNode =
        (struct AdjListNode *)malloc(sizeof(struct AdjListNode));
    newNode->dest = dest;
    newNode->weight = weight;
    newNode->next = NULL;
    return newNode;
}

// A utility function that creates a graph of V vertices
struct Graph *createGraph(int V)
{
    struct Graph *graph = (struct Graph *)malloc(sizeof(struct Graph));
    graph->V = V;

    // Create an array of adjacency lists. Size of array will be V
    graph->array = (struct AdjList *)malloc(V * sizeof(struct AdjList));

    // Initialize each adjacency list as empty by making head as NULL
    for (int i = 0; i < V; ++i)
        graph->array[i].head = NULL;

    return graph;
}

// Adds an edge to an undirected graph
void addEdge(struct Graph *graph, int src, int dest, int weight)
{
    // Add an edge from src to dest. A new node is added to the adjacency
    // list of src. The node is added at the begining
    struct AdjListNode *newNode = newAdjListNode(dest, weight);
    newNode->next = graph->array[src].head;
    graph->array[src].head = newNode;

    // Since graph is undirected, add an edge from dest to src also
    newNode = newAdjListNode(src, weight);
    newNode->next = graph->array[dest].head;
    graph->array[dest].head = newNode;
}

// Structure to represent a min heap node
struct MinHeapNode
{
    int v;
    int dist;
};

// Structure to represent a min heap
struct MinHeap
{
    int size;     // Number of heap nodes present currently
    int capacity; // Capacity of min heap
    int *pos;     // This is needed for decreaseKey()
    struct MinHeapNode **array;
};

// A utility function to create a new Min Heap Node
struct MinHeapNode *newMinHeapNode(int v, int dist)
{
    struct MinHeapNode *minHeapNode =
        (struct MinHeapNode *)malloc(sizeof(struct MinHeapNode));
    minHeapNode->v = v;
    minHeapNode->dist = dist;
    return minHeapNode;
}

// A utility function to create a Min Heap
struct MinHeap *createMinHeap(int capacity)
{
    struct MinHeap *minHeap =
        (struct MinHeap *)malloc(sizeof(struct MinHeap));
    minHeap->pos = (int *)malloc(capacity * sizeof(int));
    minHeap->size = 0;
    minHeap->capacity = capacity;
    minHeap->array =
        (struct MinHeapNode **)malloc(capacity * sizeof(struct MinHeapNode *));
    return minHeap;
}

// A utility function to swap two nodes of min heap. Needed for min heapify
void swapMinHeapNode(struct MinHeapNode **a, struct MinHeapNode **b)
{
    struct MinHeapNode *t = *a;
    *a = *b;
    *b = t;
}

// A standard function to heapify at given idx
// This function also updates position of nodes when they are swapped.
// Position is needed for decreaseKey()
void minHeapify(struct MinHeap *minHeap, int idx)
{
    int smallest, left, right;
    smallest = idx;
    left = 2 * idx + 1;
    right = 2 * idx + 2;

    if (left < minHeap->size &&
        minHeap->array[left]->dist < minHeap->array[smallest]->dist)
        smallest = left;

    if (right < minHeap->size &&
        minHeap->array[right]->dist < minHeap->array[smallest]->dist)
        smallest = right;

    if (smallest != idx)
    {
        // The nodes to be swapped in min heap
        MinHeapNode *smallestNode = minHeap->array[smallest];
        MinHeapNode *idxNode = minHeap->array[idx];

        // Swap positions
        minHeap->pos[smallestNode->v] = idx;
        minHeap->pos[idxNode->v] = smallest;

        // Swap nodes
        swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]);

        minHeapify(minHeap, smallest);
    }
}

// A utility function to check if the given minHeap is ampty or not
int isEmpty(struct MinHeap *minHeap)
{
    return minHeap->size == 0;
}

// Standard function to extract minimum node from heap
struct MinHeapNode *extractMin(struct MinHeap *minHeap)
{
    if (isEmpty(minHeap))
        return NULL;

    // Store the root node
    struct MinHeapNode *root = minHeap->array[0];

    // Replace root node with last node
    struct MinHeapNode *lastNode = minHeap->array[minHeap->size - 1];
    minHeap->array[0] = lastNode;

    // Update position of last node
    minHeap->pos[root->v] = minHeap->size - 1;
    minHeap->pos[lastNode->v] = 0;

    // Reduce heap size and heapify root
    --minHeap->size;
    minHeapify(minHeap, 0);

    return root;
}

// Function to decreasy dist value of a given vertex v. This function
// uses pos[] of min heap to get the current index of node in min heap
void decreaseKey(struct MinHeap *minHeap, int v, int dist)
{
    // Get the index of v in heap array
    int i = minHeap->pos[v];

    // Get the node and update its dist value
    minHeap->array[i]->dist = dist;

    // Travel up while the complete tree is not hepified.
    // This is a O(Logn) loop
    while (i && minHeap->array[i]->dist < minHeap->array[(i - 1) / 2]->dist)
    {
        // Swap this node with its parent
        minHeap->pos[minHeap->array[i]->v] = (i - 1) / 2;
        minHeap->pos[minHeap->array[(i - 1) / 2]->v] = i;
        swapMinHeapNode(&minHeap->array[i], &minHeap->array[(i - 1) / 2]);

        // move to parent index
        i = (i - 1) / 2;
    }
}

// A utility function to check if a given vertex
// 'v' is in min heap or not
bool isInMinHeap(struct MinHeap *minHeap, int v)
{
    if (minHeap->pos[v] < minHeap->size)
        return true;
    return false;
}

// A utility function used to print the solution
void printArr(int dist[], int n)
{
    printf("Vertex Distance from Source\n");
    for (int i = 0; i < n; ++i)
        printf("%d \t\t %d\n", i, dist[i]);
}

// The main function that calulates distances of shortest paths from src to all
// vertices. It is a O(ELogV) function
void dijkstra(struct Graph *graph, int src)
{
    int V = graph->V; // Get the number of vertices in graph
    int dist[V];      // dist values used to pick minimum weight edge in cut

    // minHeap represents set E
    struct MinHeap *minHeap = createMinHeap(V);

    // Initialize min heap with all vertices. dist value of all vertices
    for (int v = 0; v < V; ++v)
    {
        dist[v] = INT_MAX;
        minHeap->array[v] = newMinHeapNode(v, dist[v]);
        minHeap->pos[v] = v;
    }

    // Make dist value of src vertex as 0 so that it is extracted first
    minHeap->array[src] = newMinHeapNode(src, dist[src]);
    minHeap->pos[src] = src;
    dist[src] = 0;
    decreaseKey(minHeap, src, dist[src]);

    // Initially size of min heap is equal to V
    minHeap->size = V;

    // In the followin loop, min heap contains all nodes
    // whose shortest distance is not yet finalized.
    while (!isEmpty(minHeap))
    {
        // Extract the vertex with minimum distance value
        struct MinHeapNode *minHeapNode = extractMin(minHeap);
        int u = minHeapNode->v; // Store the extracted vertex number

        // Traverse through all adjacent vertices of u (the extracted
        // vertex) and update their distance values
        struct AdjListNode *pCrawl = graph->array[u].head;
        while (pCrawl != NULL)
        {
            int v = pCrawl->dest;

            // If shortest distance to v is not finalized yet, and distance to v
            // through u is less than its previously calculated distance
            if (isInMinHeap(minHeap, v) && dist[u] != INT_MAX &&
                pCrawl->weight + dist[u] < dist[v])
            {
                dist[v] = dist[u] + pCrawl->weight;

                // update distance value in min heap also
                decreaseKey(minHeap, v, dist[v]);
            }
            pCrawl = pCrawl->next;
        }
    }

    // print the calculated shortest distances
    printArr(dist, V);
}

// Driver program to test above functions
int main()
{
    // create the graph given in above fugure
    int V = 9;
    struct Graph *graph = createGraph(V);
    addEdge(graph, 0, 1, 4);
    addEdge(graph, 0, 7, 8);
    addEdge(graph, 1, 2, 8);
    addEdge(graph, 1, 7, 11);
    addEdge(graph, 2, 3, 7);
    addEdge(graph, 2, 8, 2);
    addEdge(graph, 2, 5, 4);
    addEdge(graph, 3, 4, 9);
    addEdge(graph, 3, 5, 14);
    addEdge(graph, 4, 5, 10);
    addEdge(graph, 5, 6, 2);
    addEdge(graph, 6, 7, 1);
    addEdge(graph, 6, 8, 6);
    addEdge(graph, 7, 8, 7);

    dijkstra(graph, 0);

    return 0;
}

以上是关于c_cpp Dijsktra的算法的主要内容,如果未能解决你的问题,请参考以下文章

4003.基于Dijsktra算法的最短路径求解

算法题解 ----堆优化版的Dijsktra算法

最短路径之Dijsktra算法(python)

最短路径Dijsktra

a*算法求最短路径和floyd还有dijsktra算法求最短路径的区别?

[Algorithm][Greedy]Dijsktra Algorithm