python 空间疾病传播模型,翻译为PyMC3
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python 空间疾病传播模型,翻译为PyMC3相关的知识,希望对你有一定的参考价值。
obs_date = '1997-06-15'
with Model() as june_model:
n_districts, n_periods, n_age_groups = I_obs.shape
### Confirmation sub-model
# Specify priors on age-specific means
age_classes = np.unique(age_index)
mu = Normal("mu", mu=0, tau=0.0001, shape=len(age_classes))
sig = HalfCauchy('sig', 5, testval=1)
var = sig**2
cor = Uniform('cor', -1, 1, testval=0)
# Build variance-covariance matrix with first-order correlation
# among age classes
diag = TT.eye(len(age_classes)) * var
Sigma = TT.fill_diagonal_offset(TT.fill_diagonal_offset(diag, var*cor, 1), var*cor, -1)
# Age-specific probabilities of confirmation as multivariate normal
# random variables
beta_age = MvNormal('beta_age', mu, inv(Sigma), shape=len(age_classes))
p_age = Deterministic('p_age', invlogit(beta_age))
p_confirm = invlogit(beta_age[age_index])
# Confirmation likelihood
lab_confirmed = Bernoulli('lab_confirmed', p_confirm, observed=y)
'''
Truncate data at observation period
'''
obs_index = all_district_data[0].index <= obs_date
I_obs_t = np.array([I_dist[obs_index] for I_dist in I_obs])
# Index for observation date, used to index out values of interest
# from the model.
t_obs = obs_index.sum() - 1
# Binomial confirmation process: confirm by age
I_age = Binomial('I_age', n=I_obs_t, p=p_age, shape=I_obs_t.shape)
# Aggregate by age
I = TT.sum(I_age, 2)
# Estimage age distribution from observed distribution of infecteds to date
age_dist, _age_dist = june_model.TransformedVar(
'age_dist', Dirichlet.dist(TT.constant([1]*n_age_groups), shape=n_age_groups),
simplextransform)
I_age_like = Potential('I_age_like', Multinomial.dist(TT.sum(I_age),
age_dist,
shape=n_age_groups).logp(TT.sum(I_age, (0,1))))
# Weakly-informative prior on proportion susceptible being
# between 0 and 0.07
p_susceptible = Beta('p_susceptible', 2, 100)
# Estimated total susceptibles by district
S_0 = Binomial('S_0', n=N.values.astype(int), p=p_susceptible, shape=N.shape,
testval=(0.04*N.values).astype(int))
S, _ = map(lambda s, i: s - TT.cumsum(i), sequences=[S_0, I])
# Transmission parameter
β = Gamma('β', 1, 0.1, testval=0.001)
θ = Exponential('θ', 1, testval=1)
Iw, _ = map(lambda i, θ: TT.dot(TT.exp(-θ*distance_matrix.values), i), [TT.transpose(I)],
non_sequences=[θ])
λ, _ = map(lambda i, s, b: b*i[:-1]*s[:-1], [I,S], non_sequences=[β])
λ_t = λ[:, -1]
new_cases = Potential('new_cases', Poisson.dist(λ).logp(I[:,1:]))
以上是关于python 空间疾病传播模型,翻译为PyMC3的主要内容,如果未能解决你的问题,请参考以下文章