python reuters_multi_cnn.py

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python reuters_multi_cnn.py相关的知识,希望对你有一定的参考价值。


from __future__ import absolute_import
from __future__ import print_function
import numpy as np

from keras.datasets import reuters
from keras.models import Sequential
from keras.layers.embeddings import Embedding
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.layers.core import Dense, Dropout, Activation, Flatten, Reshape, Merge
from keras.utils import np_utils
from keras.preprocessing.sequence import pad_sequences


vocab_size = 20000
batch_size = 1
embedding_size = 64
maxlen = 50
nb_feature_maps = 32

print("Loading data...")
(X_train, y_train), (X_test, y_test) = reuters.load_data(nb_words=vocab_size, test_split=0.2)
print(len(X_train), 'train sequences')
print(len(X_test), 'test sequences')

nb_classes = np.max(y_train) + 1
print(nb_classes, 'classes')

X_train = pad_sequences(X_train, maxlen=maxlen)
X_test = pad_sequences(X_test, maxlen=maxlen)
print('X_train shape:', X_train.shape)
print('X_test shape:', X_test.shape)

print("Convert class vector to binary class matrix (for use with categorical_crossentropy)")
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
print('Y_train shape:', Y_train.shape)
print('Y_test shape:', Y_test.shape)

ngram_filters = [2, 3, 4]
conv_filters = []

for n_gram in ngram_filters:
    sequential = Sequential()
    conv_filters.append(sequential)

    sequential.add(Embedding(vocab_size + 1, embedding_size))
    sequential.add(Reshape(1, maxlen, embedding_size))
    sequential.add(Convolution2D(nb_feature_maps, 1, n_gram, embedding_size))
    sequential.add(Activation("relu"))
    sequential.add(MaxPooling2D(poolsize=(maxlen - n_gram + 1, 1)))
    sequential.add(Flatten())

model = Sequential()
model.add(Merge(conv_filters, mode='concat'))
model.add(Dropout(0.5))
model.add(Dense(nb_feature_maps * len(conv_filters), nb_classes))
model.add(Activation("sigmoid"))

model.compile(loss='categorical_crossentropy', optimizer='adadelta')
model.fit(X=X_train, y=Y_train, batch_size=batch_size, nb_epoch=200, verbose=1, show_accuracy=True, validation_split=0.1)

score = model.evaluate(X_test, Y_test, batch_size=batch_size, verbose=1, show_accuracy=True)
print('Test score:', score[0])
print('Test accuracy:', score[1])

以上是关于python reuters_multi_cnn.py的主要内容,如果未能解决你的问题,请参考以下文章

001--python全栈--基础知识--python安装

Python代写,Python作业代写,代写Python,代做Python

Python开发

Python,python,python

Python 介绍

Python学习之认识python