python KDE_mult_overdens.py
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python KDE_mult_overdens.py相关的知识,希望对你有一定的参考价值。
import numpy as np
from scipy.ndimage.filters import maximum_filter
from scipy.ndimage.filters import gaussian_filter
from scipy.ndimage.morphology import generate_binary_structure, binary_erosion
from scipy import stats
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import matplotlib.offsetbox as offsetbox
# from mpl_toolkits.axes_grid1 import make_axes_locatable
def get_coords():
'''
Return coordinates from file.
'''
# Each sub-list in file_data is a row of the file.
# file_data = np.loadtxt("TR24_clean.dat")
file_data = np.loadtxt("CLUSTER.DAT")
# Extract coordinates and zip them into two lists.
ra, dec = zip(*file_data)[1], zip(*file_data)[2]
# ra_rang, dec_rang = max(ra) - min(ra), max(dec) - min(dec)
# print 'RA range: ', ra_rang
# print 'DEC range: ', dec_rang
return ra, dec
def get_2d_histo(x_data, y_data, N_bins, std_dev):
'''
Return 2D histogram for the positional data.
'''
xmin, xmax = min(x_data), max(x_data)
ymin, ymax = min(y_data), max(y_data)
# Calculate the number of bins used.
x_rang, y_rang = (xmax - xmin), (ymax - ymin)
# Bin width to create the 2D histogram.
bin_width = min(x_rang, y_rang) / N_bins
# Number of bins in x,y given the bin width.
binsxy = [int(x_rang / bin_width), int(y_rang / bin_width)]
# hist_2d is the 2D histogram, *edges store the edges of the bins.
hist_2d, xedges, yedges = np.histogram2d(
x_data, y_data, range=[[xmin, xmax], [ymin, ymax]], bins=binsxy)
hist = gaussian_filter(hist_2d, std_dev, mode='nearest') # 'constant')
return hist, xedges, yedges
def detect_peaks(image):
"""
Takes an image and detect the peaks using the local maximum filter.
Returns a boolean mask of the peaks (i.e. 1 when
the pixel's value is the neighborhood maximum, 0 otherwise)
"""
# define an 8-connected neighborhood
neighborhood = generate_binary_structure(2, 2)
# apply the local maximum filter; all pixel of maximal value
# in their neighborhood are set to 1
local_max = maximum_filter(image, footprint=neighborhood) == image
# local_max is a mask that contains the peaks we are
# looking for, but also the background.
# In order to isolate the peaks we must remove the background from the
# mask.
# we create the mask of the background
background = (image == 0)
# a little technicality: we must erode the background in order to
# successfully subtract it form local_max, otherwise a line will
# appear along the background border (artifact of the local maximum filter)
eroded_background = binary_erosion(
background, structure=neighborhood, border_value=1)
# we obtain the final mask, containing only peaks,
# by removing the background from the local_max mask
detected_peaks = local_max - eroded_background
return detected_peaks
def get_peaks_coords(peaks, ra, dec, histo_edges):
'''
Transform peak bin coordinates into actual coordinates.
'''
peaks_coords = []
# for each smoothed chart.
for i, h_p in enumerate(peaks):
xedges, yedges = histo_edges[i]
max_dens_coords = []
# For each x column in the histogram.
for x_p_indx, x_col in enumerate(h_p):
# For each y column in the histogram.
for y_p_indx, y_p in enumerate(x_col):
if y_p:
x_cent_bin, y_cent_bin = x_p_indx, y_p_indx
# x,y coords of the center of the above bin.
x_cent_pix = np.average(xedges[x_cent_bin:x_cent_bin + 2])
y_cent_pix = np.average(yedges[y_cent_bin:y_cent_bin + 2])
max_dens_coords.append([x_cent_pix, y_cent_pix])
peaks_coords.append(max_dens_coords)
return peaks_coords
def get_kde_dens(ra, dec, peaks_coords):
'''
'''
# Obtain Gaussian KDE in coordinates.
values = np.vstack([ra, dec])
kernel = stats.gaussian_kde(values)
max_dens = []
for p in peaks_coords:
# Evaluate kernel in peak coordinates.
positions = np.vstack([zip(*p)[0], zip(*p)[1]])
k_pos = kernel(positions)
# Store density values in those positions.
max_dens.append(k_pos)
return max_dens
def get_filter_dens(peaks_coords, max_dens, thresh=0.75):
'''
'''
max_dens_coords, max_dens_filt = [], []
for p, md in zip(peaks_coords, max_dens):
max_d = max(md)
coords_f, dens_f = [], []
for i, dens in enumerate(md):
# Only store those that are larger than a certain threshold.
if dens > (max_d * thresh):
dens_f.append(dens)
coords_f.append(p[i])
max_dens_coords.append(coords_f)
max_dens_filt.append(dens_f)
return max_dens_coords, max_dens_filt
def make_plot(std_dev_lst, clust_histo, ra, dec, peaks_coords, max_dens,
max_dens_coords, max_dens_filt, thresh):
'''
'''
fig = plt.figure(figsize=(15, 50))
gs = gridspec.GridSpec(16, 3)
i, j = 0, 0
for h, p, m, mc, mf in zip(clust_histo, peaks_coords, max_dens,
max_dens_coords, max_dens_filt):
print 'Plotting: ', i, i + 1, i + 2
ax1 = plt.subplot(gs[i])
plt.tick_params(axis='both', which='major', labelsize=8)
plt.imshow(h.transpose(), origin='lower', interpolation='none')
# ax.imshow(h.transpose(), origin='lower')
# Text box.
ob = offsetbox.AnchoredText(r'$\sigma={}$'.format(std_dev_lst[j]),
loc=2, prop=dict(size=8))
ob.patch.set(alpha=0.65)
ax1.add_artist(ob)
ax1.invert_xaxis()
j += 1
# ax2 = plt.subplot(gs[i + 1])
# cm = plt.cm.gist_earth_r
# plt.imshow(p.transpose(), origin='lower', cmap=cm)
# ax2.invert_xaxis()
siz = 5 + 95 * (np.array(m) / max(m)) ** 2
ax2 = plt.subplot(gs[i + 1])
plt.tick_params(axis='both', which='major', labelsize=8)
plt.xlabel(r'$RA\,(^{\circ})$', fontsize=10)
plt.ylabel(r'$DEC\,(^{\circ})$', fontsize=10)
x_c, y_c = zip(*p)[0], zip(*p)[1]
plt.xlim(min(ra), max(ra))
plt.ylim(min(dec), max(dec))
cm = plt.cm.get_cmap('RdYlBu_r')
plt.scatter(x_c, y_c, c=m, cmap=cm, s=siz, lw=0.25)
ax2.invert_xaxis()
ax2.set_aspect('equal')
# v_min_mp, v_max_mp = min(m), max(m)
siz = 5 + 95 * (np.array(mf) / max(mf)) ** 6
ax3 = plt.subplot(gs[i + 2])
plt.tick_params(axis='both', which='major', labelsize=8)
plt.xlabel(r'$RA\,(^{\circ})$', fontsize=10)
plt.ylabel(r'$DEC\,(^{\circ})$', fontsize=10)
x_c, y_c = zip(*mc)[0], zip(*mc)[1]
plt.xlim(min(ra), max(ra))
plt.ylim(min(dec), max(dec))
cm = plt.cm.get_cmap('RdYlBu_r')
plt.scatter(x_c, y_c, c=mf, cmap=cm, s=siz, lw=0.25)
# vmin=v_min_mp, vmax=v_max_mp)
# Text box.
ob = offsetbox.AnchoredText('thresh={}'.format(thresh), loc=2,
prop=dict(size=8))
ob.patch.set(alpha=0.5)
ax3.add_artist(ob)
# Invert axis and set aspect.
ax3.invert_xaxis()
ax3.set_aspect('equal')
# Increase counter.
i += 3
# Output png file.
fig.tight_layout()
plt.savefig('/home/gabriel/Descargas/peak_detect.png', dpi=300)
# Get coordinates.
ra, dec = get_coords()
# Generate 2D histogram of the coordinates, using several different numbers
# of bins and standard deviating values for the Gaussian smoothing.
clust_histo, histo_edges = [], []
std_dev_lst = [2, 2.25, 2.5, 2.75, 3., 3.25, 3.5, 3.75, 4., 4.25, 4.5,
4.75, 5., 5.25, 5.5, 5.75]
for N_bins in [100]:
for std_dev in std_dev_lst:
h, xedges, yedges = get_2d_histo(ra, dec, N_bins, std_dev)
clust_histo.append(h)
histo_edges.append([xedges, yedges])
# Detect peaks.
peaks = []
for h in clust_histo:
peaks.append(detect_peaks(h))
# Transform peaks bin coordinates into actual coordinates.
peaks_coords = get_peaks_coords(peaks, ra, dec, histo_edges)
# Obtain KDE values for each peak in each smoothed cluster.
max_dens = get_kde_dens(ra, dec, peaks_coords)
thresh = 0.9
# Filter found max density coordinates below a certain threshold.
max_dens_coords, max_dens_filt = get_filter_dens(peaks_coords, max_dens,
thresh)
# Plot results.
make_plot(std_dev_lst, clust_histo, ra, dec, peaks_coords, max_dens,
max_dens_coords, max_dens_filt, thresh)
以上是关于python KDE_mult_overdens.py的主要内容,如果未能解决你的问题,请参考以下文章