python 用于BLUEPRINT年会的DEEPBLUE海报的案例2。 (09.2015)。通过a在您自己的数据集中聚合DNA甲基化信号
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python 用于BLUEPRINT年会的DEEPBLUE海报的案例2。 (09.2015)。通过a在您自己的数据集中聚合DNA甲基化信号相关的知识,希望对你有一定的参考价值。
# Aggregate DNA methylation signal in your own datasets by all available H3K4me3 peaks in hESCs.
import xmlrpclib
import time
url = "http://deepblue.mpi-inf.mpg.de/xmlrpc"
user_key = "anonymous_key"
server = xmlrpclib.Server(url, allow_none=True)
(s, monocytes_biosources) = server.get_biosource_children("monocyte", user_key)
monocytes_biosources_names = [biosource[1] for biosource in monocytes_biosources]
print monocytes_biosources_names
(status, samples) = server.list_samples(monocytes_biosources_names, {"source": "BLUEPRINT Epigenome"}, user_key)
samples
samples_ids = [sample[0] for sample in samples]
(status, experiments) = server.list_experiments("", "DNA Methylation", samples_ids, "Bisulfite-Seq", "BLUEPRINT Epigenome", user_key)
print experiments
selected_experiments = []
peak_format = "CHROMOSOME,START,END,NAME,SCORE,STRAND,SIGNAL_VALUE,P_VALUE,Q_VALUE"
for experiment in experiments:
(status, info) = server.info(experiment[0], user_key) # experiment[0] is the ID of the experiment.
if info[0]["data_type"] == "signal" and info[0]["extra_metadata"]["FILE_TYPE"] == "BS_METH_CALL_CNAG":
selected_experiments.append(experiment)
experiment_names = [experiment[1] for experiment in selected_experiments]
experiment_names
(status, query_id) = server.select_regions(experiment_names, None, None, None, None, None, None, None, None, user_key )
server.list_requests("", user_key)
server.get_request_data(request_id, user_key)
(status, annotation_key) = server.select_annotations("Cpg Islands", "hg19", None, None, None, user_key)
experiments_columns = {}
for experiment_name in experiment_names:
experiments_columns[experiment_name] = "VALUE"
experiments_columns
(status, request) = server.score_matrix(experiments_columns, "mean", annotation_key , user_key )
(status, info) = server.info(request, user_key)
while info[0]["state"] != "done" and info[0]["state"] != "error":
time.sleep(5)
print info
(status, info) = server.info(request, user_key)
(status, data) = server.get_request_data(request_id, user_key)
以上是关于python 用于BLUEPRINT年会的DEEPBLUE海报的案例2。 (09.2015)。通过a在您自己的数据集中聚合DNA甲基化信号的主要内容,如果未能解决你的问题,请参考以下文章
python | 对 Flask 蓝图(Blueprint)的理解
Python进阶(四十九)-初识Flask Blueprint
Python Flask 蓝图Blueprint
为什么Aries Blueprint没有为camel-cxf和camel-blueprint注册名称空间处理程序?
[Deep-Learning-with-Python]GAN图片生成
Flask Python中的URL前缀使用Blueprint部署到Heroku