python Theanoによる自己符号化器の実装
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python Theanoによる自己符号化器の実装相关的知识,希望对你有一定的参考价值。
#coding: utf-8
import time
import numpy as np
import theano
import theano.tensor as T
from theano.tensor.shared_randomstreams import RandomStreams
import gzip
import cPickle
class Autoencoder(object):
def __init__(self, numpy_rng, theano_rng=None,
input=None,
n_visible=784, n_hidden=500,
W=None, bhid=None, bvis=None):
self.n_visible = n_visible
self.n_hidden = n_hidden
if not theano_rng:
theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))
if not W:
# 入力層と出力層の間の重み
initial_W = np.asarray(
numpy_rng.uniform(
low=-4 * np.sqrt(6.0 / (n_hidden + n_visible)),
high=4 * np.sqrt(6.0 / (n_hidden + n_visible)),
size=(n_visible, n_hidden)
),
dtype=theano.config.floatX
)
W = theano.shared(value=initial_W, name='W', borrow=True)
if not bvis:
# 入力層(visible)のユニットのバイアス
bvis = theano.shared(
value=np.zeros(n_visible, dtype=theano.config.floatX),
borrow=True)
if not bhid:
# 隠れ層(hidden)のユニットのバイアス
bhid = theano.shared(
value=np.zeros(n_hidden, dtype=theano.config.floatX),
name='b',
borrow=True)
# パラメータ
self.W = W
self.b = bhid
self.W_prime = self.W.T
self.b_prime = bvis
self.params = [self.W, self.b, self.b_prime]
self.theano_rng = theano_rng
if input is None:
self.x = T.dmatrix(name='input')
else:
self.x = input
def get_hidden_values(self, input):
"""入力層の値を隠れ層の値に変換"""
return T.nnet.sigmoid(T.dot(input, self.W) + self.b)
def get_reconstructed_input(self, hidden):
"""隠れ層の値を入力層の値に逆変換"""
return T.nnet.sigmoid(T.dot(hidden, self.W_prime) + self.b_prime)
def get_cost_updates(self, learning_rate):
"""コスト関数と更新式のシンボルを返す"""
# 入力を変換
y = self.get_hidden_values(self.x)
# 変換した値を逆変換で入力に戻す
z = self.get_reconstructed_input(y)
# コスト関数のシンボル
# 元の入力と再構築した入力の交差エントロピー誤差を計算
# 入力xがミニバッチのときLはベクトルになる
L = - T.sum(self.x * T.log(z) + (1 - self.x) * T.log(1 - z), axis=1)
# Lはミニバッチの各サンプルの交差エントロピー誤差なので全サンプルで平均を取る
cost = T.mean(L)
# cost += 0.001 * abs(self.W).sum() # L1 regularization
# cost += 0.001 * (self.W ** 2).sum() # L2 regularization
# 誤差関数の微分
gparams = T.grad(cost, self.params)
# 更新式のシンボル
updates = [(param, param - learning_rate * gparam)
for param, gparam in zip(self.params, gparams)]
return cost, updates
def feedforward(self):
"""入力をフィードフォワードさせて出力を計算"""
y = self.get_hidden_values(self.x)
z = self.get_reconstructed_input(y)
return z
def __getstate__(self):
"""パラメータの状態を返す"""
return (self.W.get_value(), self.b.get_value(), self.b_prime.get_value())
def __setstate__(self, state):
"""パラメータの状態をセット"""
self.W.set_value(state[0])
self.b.set_value(state[1])
self.b_prime.set_value(state[2])
def load_data(dataset):
"""データセットをロードしてGPUの共有変数に格納"""
f = gzip.open(dataset, 'rb')
train_set, valid_set, test_set = cPickle.load(f)
f.close()
def shared_dataset(data_xy, borrow=True):
data_x, data_y = data_xy
# 共有変数には必ずfloat型で格納
shared_x = theano.shared(np.asarray(data_x, dtype=theano.config.floatX), borrow=borrow)
shared_y = theano.shared(np.asarray(data_y, dtype=theano.config.floatX), borrow=borrow)
# ラベルはint型なのでキャストして返す
return shared_x, T.cast(shared_y, 'int32')
test_set_x, test_set_y = shared_dataset(test_set)
valid_set_x, valid_set_y = shared_dataset(valid_set)
train_set_x, train_set_y = shared_dataset(train_set)
rval = [(train_set_x, train_set_y),
(valid_set_x, valid_set_y),
(test_set_x, test_set_y)]
return rval
if __name__ == "__main__":
learning_rate = 0.1
training_epochs = 20
batch_size = 20
# 学習データのロード
datasets = load_data('mnist.pkl.gz')
# 自己符号化器は教師なし学習なので訓練データのラベルは使わない
train_set_x = datasets[0][0]
# ミニバッチ数
n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
# ミニバッチのインデックスを表すシンボル
index = T.lscalar()
# ミニバッチの学習データを表すシンボル
x = T.matrix('x')
# モデル構築
rng = np.random.RandomState(123)
theano_rng = RandomStreams(rng.randint(2 ** 30))
autoencoder = Autoencoder(numpy_rng=rng,
theano_rng=theano_rng,
input=x,
n_visible=28 * 28,
n_hidden=500)
# コスト関数と更新式のシンボルを取得
cost, updates = autoencoder.get_cost_updates(learning_rate=learning_rate)
# 訓練用の関数を定義
train_da = theano.function([index],
cost,
updates=updates,
givens={
x: train_set_x[index * batch_size: (index + 1) * batch_size]
})
# モデル訓練
fp = open("cost.txt", "w")
start_time = time.clock()
for epoch in xrange(training_epochs):
c = []
for batch_index in xrange(n_train_batches):
c.append(train_da(batch_index))
print "Training epoch %d, cost %f" % (epoch, np.mean(c))
fp.write("%d\t%f\n" % (epoch, np.mean(c)))
fp.flush()
end_time = time.clock()
training_time = (end_time - start_time)
fp.close()
print "time: %ds" % (training_time)
# 学習したモデルの状態を保存
f = open('autoencoder.pkl', 'wb')
cPickle.dump(autoencoder.__getstate__(), f, protocol=cPickle.HIGHEST_PROTOCOL)
f.close()
以上是关于python Theanoによる自己符号化器の実装的主要内容,如果未能解决你的问题,请参考以下文章