python Python PANDAS:将数据帧加载并保存到sqlite,MySQL,Oracle,Postgres
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python Python PANDAS:将数据帧加载并保存到sqlite,MySQL,Oracle,Postgres相关的知识,希望对你有一定的参考价值。
# -*- coding: utf-8 -*-
"""
LICENSE: BSD (same as pandas)
example use of pandas with oracle mysql postgresql sqlite
- updated 9/18/2012 with better column name handling; couple of bug fixes.
- used ~20 times for various ETL jobs. Mostly MySQL, but some Oracle.
to do:
save/restore index (how to check table existence? just do select count(*)?),
finish odbc,
add booleans?,
sql_server?
"""
import numpy as np
import cStringIO
import pandas.io.sql as psql
from dateutil import parser
dbtypes={
'mysql' : {'DATE':'DATE', 'DATETIME':'DATETIME', 'INT':'BIGINT', 'FLOAT':'FLOAT', 'VARCHAR':'VARCHAR'},
'oracle': {'DATE':'DATE', 'DATETIME':'DATE', 'INT':'NUMBER', 'FLOAT':'NUMBER', 'VARCHAR':'VARCHAR2'},
'sqlite': {'DATE':'TIMESTAMP', 'DATETIME':'TIMESTAMP', 'INT':'NUMBER', 'FLOAT':'NUMBER', 'VARCHAR':'VARCHAR2'},
'postgresql': {'DATE':'TIMESTAMP', 'DATETIME':'TIMESTAMP', 'INT':'BIGINT', 'FLOAT':'REAL', 'VARCHAR':'TEXT'},
}
# from read_frame. ?datetime objects returned? convert to datetime64?
def read_db(sql, con):
return psql.frame_query(sql, con)
def table_exists(name=None, con=None, flavor='sqlite'):
if flavor == 'sqlite':
sql="SELECT name FROM sqlite_master WHERE type='table' AND name='MYTABLE';".replace('MYTABLE', name)
elif flavor == 'mysql':
sql="show tables like 'MYTABLE';".replace('MYTABLE', name)
elif flavor == 'postgresql':
sql= "SELECT * FROM pg_tables WHERE tablename='MYTABLE';".replace('MYTABLE', name)
elif flavor == 'oracle':
sql="select table_name from user_tables where table_name='MYTABLE'".replace('MYTABLE', name.upper())
elif flavor == 'odbc':
raise NotImplementedError
else:
raise NotImplementedError
df = read_db(sql, con)
print sql, df
print 'table_exists?', len(df)
exists = True if len(df)>0 else False
return exists
def write_frame(frame, name=None, con=None, flavor='sqlite', if_exists='fail'):
"""
Write records stored in a DataFrame to specified dbms.
if_exists:
'fail' - create table will be attempted and fail
'replace' - if table with 'name' exists, it will be deleted
'append' - assume table with correct schema exists and add data. if no table or bad data, then fail.
??? if table doesn't exist, make it.
if table already exists. Add: if_exists=('replace','append','fail')
"""
if if_exists=='replace' and table_exists(name, con, flavor):
cur = con.cursor()
cur.execute("drop table "+name)
cur.close()
if if_exists in ('fail','replace') or ( if_exists=='append' and table_exists(name, con, flavor)==False ):
#create table
schema = get_schema(frame, name, flavor)
if flavor=='oracle':
schema = schema.replace(';','')
cur = con.cursor()
if flavor=='mysql':
cur.execute("SET sql_mode='ANSI_QUOTES';")
print 'schema\n', schema
cur.execute(schema)
cur.close()
print 'created table'
cur = con.cursor()
#bulk insert
if flavor=='sqlite' or flavor=='odbc':
wildcards = ','.join(['?'] * len(frame.columns))
insert_sql = 'INSERT INTO %s VALUES (%s)' % (name, wildcards)
#print 'insert_sql', insert_sql
data = [tuple(x) for x in frame.values]
#print 'data', data
cur.executemany(insert_sql, data)
elif flavor=='oracle':
cols=[db_colname(k) for k in frame.dtypes.index]
colnames = ','.join(cols)
colpos = ', '.join([':'+str(i+1) for i,f in enumerate(cols)])
insert_sql = 'INSERT INTO %s (%s) VALUES (%s)' % (name, colnames, colpos)
#print 'insert_sql', insert_sql
data = [ convertSequenceToDict(rec) for rec in frame.values]
#print data
cur.executemany(insert_sql, data)
elif flavor=='mysql':
wildcards = ','.join(['%s'] * len(frame.columns))
cols=[db_colname(k) for k in frame.dtypes.index]
colnames = ','.join(cols)
insert_sql = 'INSERT INTO %s (%s) VALUES (%s)' % (name, colnames, wildcards)
print insert_sql
#data = [tuple(x) for x in frame.values]
data= [ tuple([ None if isnull(v) else v for v in rw]) for rw in frame.values ]
print data[0]
cur.executemany(insert_sql, data)
elif flavor=='postgresql':
postgresql_copy_from(frame, name, con)
else:
raise NotImplementedError
con.commit()
cur.close()
return
def nan2none(df):
dnp = df.values
for rw in dnp:
rw2 = tuple([ None if v==np.Nan else v for v in rw])
tpl_list= [ tuple([ None if v==np.Nan else v for v in rw]) for rw in dnp ]
return tpl_list
def db_colname(pandas_colname):
'''convert pandas column name to a DBMS column name
TODO: deal with name length restrictions, esp for Oracle
'''
colname = pandas_colname.replace(' ','_').strip()
return colname
def postgresql_copy_from(df, name, con ):
# append data into existing postgresql table using COPY
# 1. convert df to csv no header
output = cStringIO.StringIO()
# deal with datetime64 to_csv() bug
have_datetime64 = False
dtypes = df.dtypes
for i, k in enumerate(dtypes.index):
dt = dtypes[k]
print 'dtype', dt, dt.itemsize
if str(dt.type)=="<type 'numpy.datetime64'>":
have_datetime64 = True
if have_datetime64:
d2=df.copy()
for i, k in enumerate(dtypes.index):
dt = dtypes[k]
if str(dt.type)=="<type 'numpy.datetime64'>":
d2[k] = [ v.to_pydatetime() for v in d2[k] ]
#convert datetime64 to datetime
#ddt= [v.to_pydatetime() for v in dd] #convert datetime64 to datetime
d2.to_csv(output, sep='\t', header=False, index=False)
else:
df.to_csv(output, sep='\t', header=False, index=False)
output.seek(0)
contents = output.getvalue()
print 'contents\n', contents
# 2. copy from
cur = con.cursor()
cur.copy_from(output, name)
con.commit()
cur.close()
return
#source: http://www.gingerandjohn.com/archives/2004/02/26/cx_oracle-executemany-example/
def convertSequenceToDict(list):
"""for cx_Oracle:
For each element in the sequence, creates a dictionary item equal
to the element and keyed by the position of the item in the list.
>>> convertListToDict(("Matt", 1))
{'1': 'Matt', '2': 1}
"""
dict = {}
argList = range(1,len(list)+1)
for k,v in zip(argList, list):
dict[str(k)] = v
return dict
def get_schema(frame, name, flavor):
types = dbtypes[flavor] #deal with datatype differences
column_types = []
dtypes = frame.dtypes
for i,k in enumerate(dtypes.index):
dt = dtypes[k]
#print 'dtype', dt, dt.itemsize
if str(dt.type)=="<type 'numpy.datetime64'>":
sqltype = types['DATETIME']
elif issubclass(dt.type, np.datetime64):
sqltype = types['DATETIME']
elif issubclass(dt.type, (np.integer, np.bool_)):
sqltype = types['INT']
elif issubclass(dt.type, np.floating):
sqltype = types['FLOAT']
else:
sampl = frame[ frame.columns[i] ][0]
#print 'other', type(sampl)
if str(type(sampl))=="<type 'datetime.datetime'>":
sqltype = types['DATETIME']
elif str(type(sampl))=="<type 'datetime.date'>":
sqltype = types['DATE']
else:
if flavor in ('mysql','oracle'):
size = 2 + max( (len(str(a)) for a in frame[k]) )
print k,'varchar sz', size
sqltype = types['VARCHAR'] + '(?)'.replace('?', str(size) )
else:
sqltype = types['VARCHAR']
colname = db_colname(k) #k.upper().replace(' ','_')
column_types.append((colname, sqltype))
columns = ',\n '.join('%s %s' % x for x in column_types)
template_create = """CREATE TABLE %(name)s (
%(columns)s
);"""
#print 'COLUMNS:\n', columns
create = template_create % {'name' : name, 'columns' : columns}
return create
###############################################################################
def test_sqlite(name, testdf):
print '\nsqlite, using detect_types=sqlite3.PARSE_DECLTYPES for datetimes'
import sqlite3
with sqlite3.connect('test.db', detect_types=sqlite3.PARSE_DECLTYPES) as conn:
#conn.row_factory = sqlite3.Row
write_frame(testdf, name, con=conn, flavor='sqlite', if_exists='replace')
df_sqlite = read_db('select * from '+name, con=conn)
print 'loaded dataframe from sqlite', len(df_sqlite)
print 'done with sqlite'
def test_oracle(name, testdf):
print '\nOracle'
import cx_Oracle
with cx_Oracle.connect('YOURCONNECTION') as ora_conn:
testdf['d64'] = np.datetime64( testdf['hire_date'] )
write_frame(testdf, name, con=ora_conn, flavor='oracle', if_exists='replace')
df_ora2 = read_db('select * from '+name, con=ora_conn)
print 'done with oracle'
return df_ora2
def test_postgresql(name, testdf):
#from pg8000 import DBAPI as pg
import psycopg2 as pg
print '\nPostgresQL, Greenplum'
pgcn = pg.connect(YOURCONNECTION)
print 'df frame_query'
try:
write_frame(testdf, name, con=pgcn, flavor='postgresql', if_exists='replace')
print 'pg copy_from'
postgresql_copy_from(testdf, name, con=pgcn)
df_gp = read_db('select * from '+name, con=pgcn)
print 'loaded dataframe from greenplum', len(df_gp)
finally:
pgcn.commit()
pgcn.close()
print 'done with greenplum'
def test_mysql(name, testdf):
import MySQLdb
print '\nmysql'
cn= MySQLdb.connect(YOURCONNECTION)
try:
write_frame(testdf, name='test_df', con=cn, flavor='mysql', if_exists='replace')
df_mysql = read_db('select * from '+name, con=cn)
print 'loaded dataframe from mysql', len(df_mysql)
finally:
cn.close()
print 'mysql done'
##############################################################################
if __name__=='__main__':
from pandas import DataFrame
from datetime import datetime
print """Aside from sqlite, you'll need to install the driver and set a valid
connection string for each test routine."""
test_data = {
"name": [ 'Joe', 'Bob', 'Jim', 'Suzy', 'Cathy', 'Sarah' ],
"hire_date": [ datetime(2012,1,1), datetime(2012,2,1), datetime(2012,3,1), datetime(2012,4,1), datetime(2012,5,1), datetime(2012,6,1) ],
"erank": [ 1, 2, 3, 4, 5, 6 ],
"score": [ 1.1, 2.2, 3.1, 2.5, 3.6, 1.8]
}
df = DataFrame(test_data)
name='test_df'
test_sqlite(name, df)
#test_oracle(name, df)
#test_postgresql(name, df)
#test_mysql(name, df)
print 'done'
以上是关于python Python PANDAS:将数据帧加载并保存到sqlite,MySQL,Oracle,Postgres的主要内容,如果未能解决你的问题,请参考以下文章
python 将带有坐标的pandas数据帧转换为geopandas数据帧。
python 将带有坐标的pandas数据帧转换为geopandas数据帧。
python - 如何将 numpy 数组附加到 pandas 数据帧