python scikit-learnで机械学习を试してみた
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python scikit-learnで机械学习を试してみた相关的知识,希望对你有一定的参考价值。
#! /usr/bin/env python3
from sklearn import datasets
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Perceptron
from sklearn.metrics import accuracy_score
import numpy as np
iris = datasets.load_iris()
x = iris.data[:, [2, 3]]
y = iris.target
x_train, x_test, y_train, y_test = train_test_split(
x, y, test_size=0.3, random_state=0)
sc = StandardScaler()
sc.fit(x_train)
x_train_std = sc.transform(x_train)
x_test_std = sc.transform(x_test)
ppn = Perceptron(n_iter=40, eta0=0.1, random_state=0, shuffle=True)
ppn.fit(x_train_std, y_train)
y_pred = ppn.predict(x_test_std)
print('Misclassified samples: %d' % (y_test != y_pred).sum())
print('Accuracy: %.2f' % accuracy_score(y_test, y_pred))
from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt
def plot_decision_regions(x, y, classifier, test_idx=None, resolution=0.02):
markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])
x1_min, x1_max = x[:, 0].min(), x[:, 0].max() + 1
x2_min, x2_max = x[:, 1].min(), x[:, 1].max() + 1
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
np.arange(x2_min, x2_max, resolution))
z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
z = z.reshape(xx1.shape)
plt.contourf(xx1, xx2, z, alpha=0.4, cmap=cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
for idx, cl in enumerate(np.unique(y)):
plt.scatter(x=x[y == cl, 0], y=x[y == cl, 1],
alpha=0.8, c=cmap(idx),
marker=markers[idx], label=cl)
if test_idx:
x_test, y_test = x[test_idx, :], y[test_idx]
plt.scatter(x_test[:, 0], x_test[:, 1], c='',
alpha=1.0, linewidths=1, marker='o',
s=55, label='test set')
x_combined_std = np.vstack((x_train_std, x_test_std))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(x=x_combined_std, y=y_combined, classifier=ppn, test_idx=range(105, 150))
plt.show()
以上是关于python scikit-learnで机械学习を试してみた的主要内容,如果未能解决你的问题,请参考以下文章
python MayaCmdsで作成した窗口を最小化する
python GCPのインスタンス名一覧を配列で取得
python 枕头で背景に色をつけて内容を回転させる
python WARPの検索APIを利用するコードの骨组み.Jupyterに埋め込むととりあえずJSONを取得できます。
python PyTorchで检查点を保存しておいて恢复する方法が参考になる
python Slack APIで用户のIDと名の一覧を取得して,出力するスクリプト