python 修复了堆栈溢出问题的日历图的版本
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python 修复了堆栈溢出问题的日历图的版本相关的知识,希望对你有一定的参考价值。
import pandas, pdb, os, csv, datetime, numpy, brewer2mpl
import matplotlib.pyplot as plt
import matplotlib.colorbar as cbar
from matplotlib import rcParams
import palettable
from dateutil import rrule
import matplotlib
import calendar
def set_matplotlib_params():
"""
Set matplotlib defaults to nicer values
"""
# rcParams dict
rcParams['mathtext.default'] ='regular'
rcParams['axes.labelsize'] = 11
rcParams['xtick.labelsize'] = 11
rcParams['ytick.labelsize'] = 11
rcParams['legend.fontsize'] = 11
rcParams['font.family'] = 'sans-serif'
rcParams['font.serif'] = ['Helvetica']
rcParams['figure.figsize'] = 7.3, 4.2
###############################################################################
#
#
#
#
###############################################################################
def get_colors():
"""
Get palettable colors, which are nicer
"""
bmap=palettable.colorbrewer.sequential.BuPu_9.mpl_colors
return bmap
###############################################################################
#
#
#
#
###############################################################################
def draw_calendar(ax,df,horz):
for i in range(len(df.index)):
if(df[col_name][i] > 0):
cur_wk = datetime.date(df.YEAR[i],df.MONTH[i],df.DAY[i]).isocalendar()[1]
cur_yr = datetime.date(df.YEAR[i],df.MONTH[i],df.DAY[i]).isocalendar()[0]
if((cur_yr < df.YEAR[i]) and (df.DAY[i]<7)):
cur_wk = 0
if(cur_yr>df.YEAR[i]):
cur_wk = 53
day_of_week = df.index[i].weekday()
#normalise each data point to val - note added a very small amount
#to data range, so that we never get exactly 1.0
val = float((df[col_name][i]-min_val)/float(max_val-min_val + 0.000001))
if(horz):
rect = matplotlib.patches.Rectangle((cur_wk,day_of_week), 1, 1, color = color_list[int(val*color_len)])
else:
rect = matplotlib.patches.Rectangle((day_of_week,cur_wk), 1, 1, color = color_list[int(val*color_len)],label='a')
ax.add_patch(rect)
###############################################################################
#
#
#
#
###############################################################################
def draw_daily_lines(ax,df,horz, num_weeks):
clr = 'w'
wth = 0.5
stl = '-'
# Draw calendar grid
for i in range(int(num_weeks)):
ax.plot([0,7],[i,i],color=clr,linestyle=stl,lw=wth)
for j in range(7):
ax.plot([j,j],[0,num_weeks],color=clr,linestyle=stl,lw=wth)
pass
###############################################################################
#
#
#
#
###############################################################################
def draw_month_boundary(ax,df,horz):
clr = 'w'
wth = 1.25
stl = '-'
month_seq = rrule.rrule(rrule.MONTHLY,dtstart=df.index[0],until=df.index[len(df.index)-1])
for mon in month_seq:
num_days = calendar.monthrange(mon.year,mon.month)[1]
cur_wk = datetime.date(mon.year,mon.month,num_days).isocalendar()[1]
cur_yr = datetime.date(mon.year,mon.month,num_days).isocalendar()[0]
day_of_week = datetime.date(mon.year,mon.month,num_days).weekday()
if(cur_yr == mon.year and (mon.month <> 12)):
if(horz):
ax.plot([cur_wk+1,cur_wk+1],[0,day_of_week+1],color=clr,linestyle=stl,lw=wth)
else:
ax.plot([0,day_of_week+1],[cur_wk+1,cur_wk+1],color=clr,linestyle=stl,lw=wth)
if (day_of_week != 6):
if(horz):
ax.plot([cur_wk+1,cur_wk],[day_of_week+1,day_of_week+1],color=clr,linestyle=stl,lw=wth) # Parallel to X-Axis
ax.plot([cur_wk,cur_wk],[day_of_week+1,7],color=clr,linestyle=stl,lw=wth)
else:
ax.plot([day_of_week+1,day_of_week+1],[cur_wk+1,cur_wk],color=clr,linestyle=stl,lw=wth) # Parallel to Y-axis
ax.plot([day_of_week+1,7],[cur_wk,cur_wk],color=clr,linestyle=stl,lw=wth)
if __name__ == '__main__':
col_name = 'NMN'
horz = False
df = pandas.read_csv('94.DGN',skiprows=10,delim_whitespace=True,usecols=['Y','M','D','BIOM','NMN','DN'])
df.rename(columns={'Y':'YEAR','M':'MONTH','D':'DAY'}, inplace=True)
df['datetime'] = df[['YEAR', 'MONTH', 'DAY']].apply(lambda s : datetime.datetime(*s),axis=1)
df = df.set_index('datetime')
num_yrs = len(df['YEAR'].unique())
max_val = max(df[col_name])
min_val = min(df[col_name])
color_list = get_colors()
color_len = len(color_list)
# Draw blank figure
fig = plt.figure()
set_matplotlib_params()
plt.subplots_adjust(hspace=0.3)
#plt.axis('off')
plt.axes().set_aspect('equal')
idx = 0
for i in df['YEAR'].unique():
sub_df = df[df['YEAR']==i]
start_date = sub_df.index[0]
end_date = sub_df.index[len(sub_df.index)-1]
diff = end_date - start_date
diff = numpy.timedelta64(diff)
num_weeks = numpy.ceil(diff/(numpy.timedelta64(1,'W')))+2
if(horz):
ax = plt.subplot2grid((num_yrs,4),(1,idx),colspan=2,rowspan=1)
else:
ax = plt.subplot2grid((4,num_yrs),(1,idx),rowspan=2,colspan=1)
ax.xaxis.tick_top()
ax.axes.get_xaxis().set_ticks([])
ax.axes.get_yaxis().set_ticks([])
ax.axis('off')
ax.set_title(str(i),fontsize=12)
if (horz):
plt.xlim(0,num_weeks)
plt.ylim(0,7)
else:
plt.xlim(0,7)
plt.ylim(num_weeks,0)
if(i == max(df['YEAR'].unique())):
plt.text(8,3,'Jan',fontsize=10)
plt.text(8,8,'Feb',fontsize=10)
plt.text(8,12,'Mar',fontsize=10)
plt.text(8,16,'Apr',fontsize=10)
plt.text(8,21,'May',fontsize=10)
plt.text(8,25,'Jun',fontsize=10)
plt.text(8,29,'Jul',fontsize=10)
plt.text(8,34,'Aug',fontsize=10)
plt.text(8,38,'Sept',fontsize=10)
plt.text(8,42,'Oct',fontsize=10)
plt.text(8,47,'Nov',fontsize=10)
plt.text(8,51,'Dec',fontsize=10)
draw_calendar(ax,sub_df,horz)
draw_daily_lines(ax,sub_df,horz, num_weeks)
draw_month_boundary(ax,sub_df,horz)
print idx, i
idx += 1
# plot an overall colorbar type legend
ax_colorbar = plt.subplot2grid((4,num_yrs), (3,0),rowspan=1,colspan=num_yrs)
mappableObject = matplotlib.cm.ScalarMappable(cmap = palettable.colorbrewer.sequential.BuPu_9.mpl_colormap)
mappableObject.set_array(numpy.array(df[col_name]))
col_bar = fig.colorbar(mappableObject, cax = ax_colorbar, orientation = 'horizontal', boundaries = numpy.arange(min_val,max_val,(max_val-min_val)/10))
# You can change the boundaries kwarg to either make the scale look less boxy (increase 10)
# or to get different values on the tick marks, or even omit it altogether to let
col_bar.set_label(col_name)
ax_colorbar.set_title(col_name + ' color mapping')
#print min_val
#print max_val
#plt.gca().legend(loc="upper right")
#draw the top overall graph
ax0 = plt.subplot2grid((4,num_yrs), (0,0),rowspan=1,colspan=num_yrs)
x_axis = numpy.arange(0.325,num_yrs+1,1.1)
bar_val = df[col_name].groupby(df['YEAR']).mean()
err_val = df[col_name].groupby(df['YEAR']).std()
ax0.bar(x_axis,bar_val,yerr=err_val,linewidth=0,width=0.25,color='g',
error_kw=dict(ecolor='gray', lw=1))
ax0.axes.get_xaxis().set_ticks([])
ax0.spines['top'].set_visible(False)
ax0.spines['right'].set_visible(False)
plt.ylabel(col_name)
ax0.axes.get_yaxis().set_ticks([])
#plt.tight_layout()
plt.savefig('aaa.png',dpi=900,frameon=False)
#plt.show()
plt.close()
以上是关于python 修复了堆栈溢出问题的日历图的版本的主要内容,如果未能解决你的问题,请参考以下文章