python k-Means聚类非常可定制(参数设置)。此外,可以在不同距离度量之间进行选择。
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python k-Means聚类非常可定制(参数设置)。此外,可以在不同距离度量之间进行选择。相关的知识,希望对你有一定的参考价值。
from __future__ import division
import random
import numpy as np
from scipy.spatial.distance import cdist # $scipy/spatial/distance.py
from scipy.sparse import issparse # $scipy/sparse/csr.py
## SOURCE CODE #########################################################################
def kmeans( X, centres, delta=.001, maxiter=10, metric="euclidean", p=2, verbose=1 ):
""" centres, Xtocentre, distances = kmeans( X, initial centres ... )
in:
X N x dim may be sparse
centres k x dim: initial centres, e.g. random.sample( X, k )
delta: relative error, iterate until the average distance to centres
is within delta of the previous average distance
maxiter
metric: any of the 20-odd in scipy.spatial.distance
"chebyshev" = max, "cityblock" = L1, "minkowski" with p=
or a function( Xvec, centrevec ), e.g. Lqmetric below
p: for minkowski metric -- local mod cdist for 0 < p < 1 too
verbose: 0 silent, 2 prints running distances
out:
centres, k x dim
Xtocentre: each X -> its nearest centre, ints N -> k
distances, N
see also: kmeanssample below, class Kmeans below.
"""
if not issparse(X):
X = np.asanyarray(X) # ?
centres = centres.todense() if issparse(centres) else centres.copy()
N, dim = X.shape
k, cdim = centres.shape
if dim != cdim:
raise ValueError( "kmeans: X %s and centres %s must have the same number of columns"%(X.shape, centres.shape ))
if verbose:
print("kmeans: X %s centres %s delta=%.2g maxiter=%d metric=%s"%(X.shape, centres.shape, delta, maxiter, metric))
allx = np.arange(N)
prevdist = 0
for jiter in range( 1, maxiter+1 ):
D = cdist_sparse( X, centres, metric=metric, p=p ) # |X| x |centres|
xtoc = D.argmin(axis=1) # X -> nearest centre
distances = D[allx,xtoc]
avdist = distances.mean() # median ?
if verbose >= 2:
print("kmeans: av |X - nearest centre| = %.4g"%avdist)
if (1 - delta) * prevdist <= avdist <= prevdist or jiter == maxiter:
break
prevdist = avdist
for jc in range(k): # (1 pass in C)
c = np.where( xtoc == jc )[0]
if len(c) > 0:
centres[jc] = X[c].mean( axis=0 )
if verbose:
print("kmeans: %d iterations cluster sizes:"%jiter, np.bincount(xtoc))
if verbose >= 2:
r50 = np.zeros(k)
r90 = np.zeros(k)
for j in range(k):
dist = distances[ xtoc == j ]
if len(dist) > 0:
r50[j], r90[j] = np.percentile( dist, (50, 90) )
print("kmeans: cluster 50 % radius",r50.astype(int))
print("kmeans: cluster 90 % radius",r90.astype(int))
# scale L1 / dim, L2 / sqrt(dim) ?
return centres, xtoc, distances
#...............................................................................
def kmeanssample( X, k, nsample=0, **kwargs ):
""" 2-pass kmeans, fast for large N:
1) kmeans a random sample of nsample ~ sqrt(N) from X
2) full kmeans, starting from those centres
"""
# merge w kmeans ? mttiw
# v large N: sample N^1/2, N^1/2 of that
# seed like sklearn ?
N, dim = X.shape
if nsample == 0:
nsample = max( 2*np.sqrt(N), 10*k )
Xsample = randomsample( X, int(nsample) )
pass1centres = randomsample( X, int(k) )
samplecentres = kmeans( Xsample, pass1centres, **kwargs )[0]
return kmeans( X, samplecentres, **kwargs )
def cdist_sparse( X, Y, **kwargs ):
""" -> |X| x |Y| cdist array, any cdist metric
X or Y may be sparse -- best csr
"""
# todense row at a time, v slow if both v sparse
sxy = 2*issparse(X) + issparse(Y)
if sxy == 0:
return cdist( X, Y, **kwargs )
d = np.empty( (X.shape[0], Y.shape[0]), np.float64 )
if sxy == 2:
for j, x in enumerate(X):
d[j] = cdist( x.todense(), Y, **kwargs ) [0]
elif sxy == 1:
for k, y in enumerate(Y):
d[:,k] = cdist( X, y.todense(), **kwargs ) [0]
else:
for j, x in enumerate(X):
for k, y in enumerate(Y):
d[j,k] = cdist( x.todense(), y.todense(), **kwargs ) [0]
return d
def randomsample( X, n ):
""" random.sample of the rows of X
X may be sparse -- best csr
"""
sampleix = random.sample( list(iter(range(X.shape[0]))), int(n) )
return X[sampleix]
def nearestcentres( X, centres, metric="euclidean", p=2 ):
""" each X -> nearest centre, any metric
euclidean2 (~ withinss) is more sensitive to outliers,
cityblock (manhattan, L1) less sensitive
"""
D = cdist( X, centres, metric=metric, p=p ) # |X| x |centres|
return D.argmin(axis=1)
def Lqmetric( x, y=None, q=.5 ):
# yes a metric, may increase weight of near matches; see ...
return (np.abs(x - y) ** q) .mean() if y is not None else (np.abs(x) ** q) .mean()
#...............................................................................
class Kmeans:
""" km = Kmeans( X, k= or centres=, ... )
in: either initial centres= for kmeans
or k= [nsample=] for kmeanssample
out: km.centres, km.Xtocentre, km.distances
iterator:
for jcentre, J in km:
clustercentre = centres[jcentre]
J indexes e.g. X[J], classes[J]
"""
def __init__( self, X, k=0, centres=None, nsample=0, **kwargs ):
self.X = X
if centres is None:
self.centres, self.Xtocentre, self.distances = kmeanssample(
X, k=k, nsample=nsample, **kwargs )
else:
self.centres, self.Xtocentre, self.distances = kmeans(
X, centres, **kwargs )
def __iter__(self):
for jc in range(len(self.centres)):
yield jc, (self.Xtocentre == jc)
## END SOURCE CODE #####################################################################
if __name__ == "__main__":
## SETTINGS
ncluster = 10
kmsample = 100 # 0: random centres, > 0: kmeanssample
kmdelta = .001
kmiter = 20
metric = "chebyshev"
"""
Possible Metrics:
"chebyshev" = max / "cityblock" = L1,Lqmetric / "euclidean" = square diff / ...
more --> https://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.spatial.distance.html
"""
print("N %d dim %d ncluster %d kmsample %d metric %s"%(N, dim, ncluster, kmsample, metric))
## DATA PREPARATION
X = DF['list of features'].as_matrix()
## kMEANS
if kmsample > 0:
centres, xtoc, dist = kmeanssample( X, ncluster, nsample=kmsample,delta=kmdelta, maxiter=kmiter, metric=metric, verbose=2 )
else:
randomcentres = randomsample( X, ncluster )
centres, xtoc, dist = kmeans( X, randomcentres,delta=kmdelta, maxiter=kmiter, metric=metric, verbose=2 )
"""
OUTPUTS:
centres: xi coordenates of centres [len(centres) = ncluster]
xtoc: cluster id per row of X input data [len(xtoc) = len(X)]
dist: list of distance to nearest centre of each row of X input data [len(xtoc) = len(X)]
"""
以上是关于python k-Means聚类非常可定制(参数设置)。此外,可以在不同距离度量之间进行选择。的主要内容,如果未能解决你的问题,请参考以下文章
k-means聚类算法python实现,导入的数据集有啥要求
不足20行 python 代码,高效实现 k-means 均值聚类算法
如何使用 k-means (Flann with python) 对文档进行聚类?