python perceptron.py
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python perceptron.py相关的知识,希望对你有一定的参考价值。
import numpy as np
class Perceptron(object):
"""Perceptron classifier.
Parameters
------------
eta : float
Learning rate (between 0.0 and 1.0)
n_iter : int
Passes over the training dataset.
Attributes
-----------
w_ : 1d-array
Weights axfter fitting.
errors_ : list
Number of misclassifications (updates) in each epoch.
"""
def __init__(self, eta=0.01, n_iter=10):
self.eta = eta
self.n_iter = n_iter
def fit(self, X, y):
"""Fit training data.
Parameters
----------
X : {array-like}, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape = [n_samples]
Target values.
Returns
-------
self : object
"""
self.w_ = np.zeros(1 + X.shape[1])
self.errors_ = []
for _ in range(self.n_iter):
errors = 0
for xi, target in zip(X, y):
update = self.eta * (target - self.predict(xi))
self.w_[1:] += update * xi
self.w_[0] += update
errors += int(update != 0.0)
self.errors_.append(errors)
return self
def net_input(self, X):
"""Calculate net input"""
return np.dot(X, self.w_[1:]) + self.w_[0]
def predict(self, X):
"""Return class label after unit step"""
return np.where(self.net_input(X) >= 0.0, 1, -1)
def score(self, X, Y):
Y_pred = self.predict(X)
diff = (Y==Y_pred).sum()
return float(diff)/float(Y.size)
if __name__ == "__main__":
import pandas as pd
df = pd.read_csv('https://archive.ics.uci.edu/ml/'
'machine-learning-databases/iris/iris.data', header=None)
y = df.iloc[0:100, 4].values
y = np.where(y == 'Iris-setosa', -1, 1)
# extract sepal length and petal length
X = df.iloc[0:100, [0, 2]].values
ppn = Perceptron(eta=0.1, n_iter=10)
ppn.fit(X, y)
print ppn.score(X, y)
以上是关于python perceptron.py的主要内容,如果未能解决你的问题,请参考以下文章
代写python,代写python编程,python代写,python编程代写,留学生python代写
001--python全栈--基础知识--python安装
Python代写,Python作业代写,代写Python,代做Python
Python开发
Python,python,python
Python 介绍