python 安德烈·卡尔帕西(Andrej Karpathy)在“创世记”第一章中训练char_rnn

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python 安德烈·卡尔帕西(Andrej Karpathy)在“创世记”第一章中训练char_rnn相关的知识,希望对你有一定的参考价值。

"""
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License
"""
from __future__ import print_function
import numpy as np

# data I/O
data = open('input.txt', 'r').read()  # should be simple plain text file
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
print('data has %d characters, %d unique.' % (data_size, vocab_size))
char_to_ix = {ch: i for i, ch in enumerate(chars)}
ix_to_char = {i: ch for i, ch in enumerate(chars)}

# hyperparameters
hidden_size = 100  # size of hidden layer of neurons
seq_length = 25  # number of steps to unroll the RNN for
learning_rate = 1e-1

# model parameters
Wxh = np.random.randn(hidden_size, vocab_size) * 0.01  # input to hidden
Whh = np.random.randn(hidden_size, hidden_size) * 0.01  # hidden to hidden
Why = np.random.randn(vocab_size, hidden_size) * 0.01  # hidden to output
bh = np.zeros((hidden_size, 1))  # hidden bias
by = np.zeros((vocab_size, 1))  # output bias


def lossFun(inputs, targets, hprev):
    """
    inputs,targets are both list of integers.
    hprev is Hx1 array of initial hidden state
    returns the loss, gradients on model parameters, and last hidden state
    """
    xs, hs, ys, ps = {}, {}, {}, {}
    hs[-1] = np.copy(hprev)
    loss = 0
    # forward pass
    for t in range(len(inputs)):
        xs[t] = np.zeros((vocab_size, 1))  # encode in 1-of-k representation
        xs[t][inputs[t]] = 1
        hs[t] = np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh,
                                                    hs[t - 1]) + bh)  # hidden state
        # unnormalized log probabilities for next chars
        ys[t] = np.dot(Why, hs[t]) + by
        # probabilities for next chars
        ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t]))
        loss += -np.log(ps[t][targets[t], 0])  # softmax (cross-entropy loss) (negative log of cross entropy)
    # backward pass: compute gradients going backwards
    dWxh, dWhh, dWhy = np.zeros_like(
        Wxh), np.zeros_like(Whh), np.zeros_like(Why)
    dbh, dby = np.zeros_like(bh), np.zeros_like(by)
    dhnext = np.zeros_like(hs[0])
    for t in reversed(range(len(inputs))):
        dy = np.copy(ps[t])
        # backprop into y. see http://cs231n.github.io/neural-networks-case-study/#grad if confused here
        dy[targets[t]] -= 1
        dWhy += np.dot(dy, hs[t].T)
        dby += dy
        dh = np.dot(Why.T, dy) + dhnext  # backprop into h
        dhraw = (1 - hs[t] * hs[t]) * dh  # backprop through tanh nonlinearity
        dbh += dhraw
        dWxh += np.dot(dhraw, xs[t].T)
        dWhh += np.dot(dhraw, hs[t - 1].T)
        dhnext = np.dot(Whh.T, dhraw)
    for dparam in [dWxh, dWhh, dWhy, dbh, dby]:
        # clip to mitigate exploding gradients
        np.clip(dparam, -5, 5, out=dparam)
    return loss, dWxh, dWhh, dWhy, dbh, dby, hs[len(inputs) - 1]


def sample(h, seed_ix, n):
    """
    sample a sequence of integers from the model
    h is memory state, seed_ix is seed letter for first time step
    """
    x = np.zeros((vocab_size, 1))
    x[seed_ix] = 1 # one hot encoding
    ixes = []
    for t in range(n):
        h = np.tanh(np.dot(Wxh, x) + np.dot(Whh, h) + bh)
        y = np.dot(Why, h) + by
        p = np.exp(y) / np.sum(np.exp(y))
        # ix = np.random.choice(range(vocab_size), p=p.ravel())
        # How this step gives a validation of generating the next letter is not lucid
        # Instead using max of the softmax probablity would be more appropriate
        ix = p.argmax()
        x = np.zeros((vocab_size, 1))
        x[ix] = 1
        ixes.append(ix)
    return ixes


n, p = 0, 0
mWxh, mWhh, mWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)
mbh, mby = np.zeros_like(bh), np.zeros_like(by)  # memory variables for Adagrad
smooth_loss = -np.log(1.0 / vocab_size) * seq_length  # loss at iteration 0

# MAIN LOOP

while n < 100000:
  # prepare inputs (we're sweeping from left to right in steps seq_length long)
    if p + seq_length + 1 >= len(data) or n == 0:
        hprev = np.zeros((hidden_size, 1))  # reset RNN memory
        p = 0  # go from start of data
    inputs = [char_to_ix[ch]
              for ch in data[p:p + seq_length]]  # input characters
    # output characters (shifted input by one position to right)
    targets = [char_to_ix[ch] for ch in data[p + 1:p + seq_length + 1]]

    # sample from the model now and then to identify the improvement
    if n % 100 == 0:
        sample_ix = sample(hprev, inputs[0], 200)
        txt = ''.join(ix_to_char[ix] for ix in sample_ix)
        print('----\n %s \n----' % (txt, ))

    # forward seq_length characters through the net and fetch gradient
    # hprev is the hidden state previous vector
    loss, dWxh, dWhh, dWhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
    smooth_loss = smooth_loss * 0.999 + loss * 0.001
    if n % 100 == 0:
        print('iter %d, loss: %f' % (n, smooth_loss))  # print progress
    # perform parameter update with Adagrad
    for param, dparam, mem in zip([Wxh, Whh, Why, bh, by],
                                  [dWxh, dWhh, dWhy, dbh, dby],
                                  [mWxh, mWhh, mWhy, mbh, mby]):
        mem += dparam * dparam
        param += -learning_rate * dparam / \
            np.sqrt(mem + 1e-8)  # adagrad update

    p += seq_length  # move data pointer
    n += 1  # iteration counter

  # gradient checking
from random import uniform


def gradCheck(inputs, target, hprev):
    global Wxh, Whh, Why, bh, by
    num_checks, delta = 10, 1e-5
    _, dWxh, dWhh, dWhy, dbh, dby, _ = lossFun(inputs, targets, hprev)
    for param, dparam, name in zip([Wxh, Whh, Why, bh, by], [dWxh, dWhh, dWhy, dbh, dby], ['Wxh', 'Whh', 'Why', 'bh', 'by']):
        s0 = dparam.shape
        s1 = param.shape
        assert (s0 == s1), "Error dims dont match: %s and %s." % (s0, s1)
        print(name)
        for i in range(num_checks):
            ri = int(uniform(0, param.size))
            # evaluate cost at [x + delta] and [x - delta]
            old_val = param.flat[ri]
            param.flat[ri] = old_val + delta
            cg0, _, _, _, _, _, _ = lossFun(inputs, targets, hprev)
            param.flat[ri] = old_val - delta
            cg1, _, _, _, _, _, _ = lossFun(inputs, targets, hprev)
            param.flat[ri] = old_val  # reset old value for this parameter
            # fetch both numerical and analytic gradient
            grad_analytic = dparam.flat[ri]
            grad_numerical = (cg0 - cg1) / (2 * delta)
            rel_error = abs(grad_analytic - grad_numerical) / \
                abs(grad_numerical + grad_analytic)
            print('%f, %f => %e ' % (grad_numerical, grad_analytic, rel_error))
            # rel_error should be on order of 1e-7 or less

以上是关于python 安德烈·卡尔帕西(Andrej Karpathy)在“创世记”第一章中训练char_rnn的主要内容,如果未能解决你的问题,请参考以下文章

[美] 尼古拉斯·卡尔 《浅薄:互联网如何毒化了我们的大脑 》

每日一句名人名言学英语(11.26)

每日一句名人名言学英语(11.26)

三国志·魏书·郭淮传

Python使用matplotlib可视化安德鲁斯曲线安德鲁斯曲线可以用来查看分类变量对于数据集是否具有判别性区分性(Andrews Curve)

《天天数学》连载35:二月四日