python 使用PyTorch微调预先训练的模型

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python 使用PyTorch微调预先训练的模型相关的知识,希望对你有一定的参考价值。

import argparse
import os
import shutil
import time

import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models



model_names = sorted(name for name in models.__dict__
    if name.islower() and not name.startswith("__"))


parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR',
                    help='path to dataset')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
                    choices=model_names,
                    help='model architecture: ' +
                        ' | '.join(model_names) +
                        ' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
                    help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                    help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
                    metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
                    metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                    help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
                    metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
                    metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
                    help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
                    help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
                    help='use pre-trained model')
parser.add_argument('--finetune', dest='finetune', action='store_true',
                    help='fine tune pre-trained model')

best_prec1 = 0

class FineTuneModel(nn.Module):
    def __init__(self, original_model, arch, num_classes):
        super(FineTuneModel, self).__init__()

        if arch.startswith('alexnet') :
            self.features = original_model.features
            self.classifier = nn.Sequential(
                nn.Dropout(),
                nn.Linear(256 * 6 * 6, 4096),
                nn.ReLU(inplace=True),
                nn.Dropout(),
                nn.Linear(4096, 4096),
                nn.ReLU(inplace=True),
                nn.Linear(4096, num_classes),
            )
            self.modelName = 'alexnet'
        elif arch.startswith('resnet') :
            # Everything except the last linear layer
            self.features = nn.Sequential(*list(original_model.children())[:-1])
            self.classifier = nn.Sequential(
                nn.Linear(512, num_classes)
            )
            self.modelName = 'resnet'
        elif arch.startswith('vgg16'):
            self.features = original_model.features
            self.classifier = nn.Sequential(
                nn.Dropout(),
                nn.Linear(25088, 4096),
                nn.ReLU(inplace=True),
                nn.Dropout(),
                nn.Linear(4096, 4096),
                nn.ReLU(inplace=True),
                nn.Linear(4096, num_classes),
            )
            self.modelName = 'vgg16'
        else :
            raise("Finetuning not supported on this architecture yet")

        # Freeze those weights
        for p in self.features.parameters():
            p.requires_grad = False


    def forward(self, x):
        f = self.features(x)
        if self.modelName == 'alexnet' :
            f = f.view(f.size(0), 256 * 6 * 6)
        elif self.modelName == 'vgg16':
            f = f.view(f.size(0), -1)
        elif self.modelName == 'resnet' :
            f = f.view(f.size(0), -1)
        y = self.classifier(f)
        return y


def main():
    global args, best_prec1
    args = parser.parse_args()

    traindir = os.path.join(args.data, 'train')
    valdir = os.path.join(args.data, 'val')
    # Get number of classes from train directory
    num_classes = len([name for name in os.listdir(traindir)])
    print("num_classes = '{}'".format(num_classes))
    # create model
    if args.finetune:
        print("=> using pre-trained model '{}'".format(args.arch))
        original_model = models.__dict__[args.arch](pretrained=True)
        model = FineTuneModel(original_model, args.arch, num_classes)
    else:
        print("=> creating model '{}'".format(args.arch))
        model = models.__dict__[args.arch]()

    if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
        model.features = torch.nn.DataParallel(model.features)
        model.cuda()
    else:
        model = torch.nn.DataParallel(model).cuda()

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            best_prec1 = checkpoint['best_prec1']
            model.load_state_dict(checkpoint['state_dict'])
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.evaluate, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    cudnn.benchmark = True

    # Data loading code
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    train_loader = torch.utils.data.DataLoader(
        datasets.ImageFolder(traindir, transforms.Compose([
            transforms.RandomSizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            normalize,
        ])),    
        batch_size=args.batch_size, shuffle=True,
        num_workers=args.workers, pin_memory=True)

    val_loader = torch.utils.data.DataLoader(
        datasets.ImageFolder(valdir, transforms.Compose([
            transforms.Scale(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            normalize,
        ])),
        batch_size=args.batch_size, shuffle=False,
        num_workers=args.workers, pin_memory=True)

    # define loss function (criterion) and pptimizer
    criterion = nn.CrossEntropyLoss().cuda()

    optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), # Only finetunable params
                                args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    if args.evaluate:
        validate(val_loader, model, criterion)
        return

    for epoch in range(args.start_epoch, args.epochs):
        adjust_learning_rate(optimizer, epoch)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch)

        # evaluate on validation set
        prec1 = validate(val_loader, model, criterion)

        # remember best prec@1 and save checkpoint
        is_best = prec1 > best_prec1
        best_prec1 = max(prec1, best_prec1)
        save_checkpoint({
            'epoch': epoch + 1,
            'arch': args.arch,
            'state_dict': model.state_dict(),
            'best_prec1': best_prec1,
        }, is_best)


def train(train_loader, model, criterion, optimizer, epoch):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to train mode
    model.train()

    end = time.time()
    for i, (input, target) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        target = target.cuda(async=True)
        input_var = torch.autograd.Variable(input)
        target_var = torch.autograd.Variable(target)

        # compute output
        output = model(input_var)
        loss = criterion(output, target_var)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
        losses.update(loss.data[0], input.size(0))
        top1.update(prec1[0], input.size(0))
        top5.update(prec5[0], input.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.print_freq == 0:
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                  'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
                   epoch, i, len(train_loader), batch_time=batch_time,
                   data_time=data_time, loss=losses, top1=top1, top5=top5))


def validate(val_loader, model, criterion):
    batch_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to evaluate mode
    model.eval()

    end = time.time()
    for i, (input, target) in enumerate(val_loader):
        target = target.cuda(async=True)
        input_var = torch.autograd.Variable(input, volatile=True)
        target_var = torch.autograd.Variable(target, volatile=True)

        # compute output
        output = model(input_var)
        loss = criterion(output, target_var)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
        losses.update(loss.data[0], input.size(0))
        top1.update(prec1[0], input.size(0))
        top5.update(prec5[0], input.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.print_freq == 0:
            print('Test: [{0}/{1}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                  'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
                   i, len(val_loader), batch_time=batch_time, loss=losses,
                   top1=top1, top5=top5))

    print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
          .format(top1=top1, top5=top5))

    return top1.avg


def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, 'model_best.pth.tar')


class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


def adjust_learning_rate(optimizer, epoch):
    """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
    lr = args.lr * (0.1 ** (epoch // 30))
    for param_group in optimizer.state_dict()['param_groups']:
        param_group['lr'] = lr


def accuracy(output, target, topk=(1,)):
    """Computes the precision@k for the specified values of k"""
    maxk = max(topk)
    batch_size = target.size(0)

    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t()
    correct = pred.eq(target.view(1, -1).expand_as(pred))

    res = []
    for k in topk:
        correct_k = correct[:k].view(-1).float().sum(0)
        res.append(correct_k.mul_(100.0 / batch_size))
    return res


if __name__ == '__main__':
    main()

以上是关于python 使用PyTorch微调预先训练的模型的主要内容,如果未能解决你的问题,请参考以下文章

5. 使用PyTorch预先训练的模型执行目标检测

Pytorch练手项目二——模型微调

无需在 Pytorch 中进行微调即可从预训练模型中获取 128 个暗淡的特征向量

六PyTorch进阶训练技巧

六PyTorch进阶训练技巧

ACL22挖宝 一个微调思路