python Tensorflow读写.pb
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python Tensorflow读写.pb相关的知识,希望对你有一定的参考价值。
# 写入pb
from __future__ import absolute_import, unicode_literals
import input_data
import tensorflow as tf
import shutil
import os.path
export_dir = './tmp/expert-export'
if os.path.exists(export_dir):
shutil.rmtree(export_dir)
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
mnist = input_data.read_data_sets("./tmp/data/", one_hot=True)
g = tf.Graph()
with g.as_default():
x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1, 28, 28, 1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess = tf.Session()
sess.run(tf.initialize_all_variables())
for i in range(201):
batch = mnist.train.next_batch(50)
if i % 100 == 0:
train_accuracy = accuracy.eval(
{x: batch[0], y_: batch[1], keep_prob: 1.0}, sess)
print "step %d, training accuracy %g" % (i, train_accuracy)
train_step.run(
{x: batch[0], y_: batch[1], keep_prob: 0.5}, sess)
print "test accuracy %g" % accuracy.eval(
{x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}, sess)
# Store variable
_W_conv1 = W_conv1.eval(sess)
_b_conv1 = b_conv1.eval(sess)
_W_conv2 = W_conv2.eval(sess)
_b_conv2 = b_conv2.eval(sess)
_W_fc1 = W_fc1.eval(sess)
_b_fc1 = b_fc1.eval(sess)
_W_fc2 = W_fc2.eval(sess)
_b_fc2 = b_fc2.eval(sess)
sess.close()
# Create new graph for exporting
g_2 = tf.Graph()
with g_2.as_default():
x_2 = tf.placeholder("float", shape=[None, 784], name="input")
W_conv1_2 = tf.constant(_W_conv1, name="constant_W_conv1")
b_conv1_2 = tf.constant(_b_conv1, name="constant_b_conv1")
x_image_2 = tf.reshape(x_2, [-1, 28, 28, 1])
h_conv1_2 = tf.nn.relu(conv2d(x_image_2, W_conv1_2) + b_conv1_2)
h_pool1_2 = max_pool_2x2(h_conv1_2)
W_conv2_2 = tf.constant(_W_conv2, name="constant_W_conv2")
b_conv2_2 = tf.constant(_b_conv2, name="constant_b_conv2")
h_conv2_2 = tf.nn.relu(conv2d(h_pool1_2, W_conv2_2) + b_conv2_2)
h_pool2_2 = max_pool_2x2(h_conv2_2)
W_fc1_2 = tf.constant(_W_fc1, name="constant_W_fc1")
b_fc1_2 = tf.constant(_b_fc1, name="constant_b_fc1")
h_pool2_flat_2 = tf.reshape(h_pool2_2, [-1, 7 * 7 * 64])
h_fc1_2 = tf.nn.relu(tf.matmul(h_pool2_flat_2, W_fc1_2) + b_fc1_2)
W_fc2_2 = tf.constant(_W_fc2, name="constant_W_fc2")
b_fc2_2 = tf.constant(_b_fc2, name="constant_b_fc2")
# DropOut is skipped for exported graph.
y_conv_2 = tf.nn.softmax(tf.matmul(h_fc1_2, W_fc2_2) + b_fc2_2, name="output")
sess_2 = tf.Session()
init_2 = tf.initialize_all_variables();
sess_2.run(init_2)
graph_def = g_2.as_graph_def()
tf.train.write_graph(graph_def, export_dir, 'expert-graph.pb', as_text=False)
# Test trained model
y__2 = tf.placeholder("float", [None, 10])
correct_prediction_2 = tf.equal(tf.argmax(y_conv_2, 1), tf.argmax(y__2, 1))
accuracy_2 = tf.reduce_mean(tf.cast(correct_prediction_2, "float"))
print "check accuracy %g" % accuracy_2.eval(
{x_2: mnist.test.images, y__2: mnist.test.labels}, sess_2)
# 读取pb
#encoding:uft-8
#读取存储的图,可运行
from __future__ import absolute_import, unicode_literals
import input_data
import tensorflow as tf
import shutil
import os.path
mnist = input_data.read_data_sets("./tmp/data/", one_hot=True)
# produces the expected result.
x_2 = tf.placeholder("float", shape=[None, 784], name="input")
y__2 = tf.placeholder("float", [None, 10])
with tf.Graph().as_default():
output_graph_def = tf.GraphDef()
output_graph_path = './tmp/expert-export/expert-graph.pb'
#sess.graph.add_to_collection("input", mnist.test.images)
with open(output_graph_path, "rb") as f:
output_graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(output_graph_def, name="")
with tf.Session() as sess:
tf.initialize_all_variables().run()
input_x = sess.graph.get_tensor_by_name("input:0")
print input_x
output = sess.graph.get_tensor_by_name("output:0")
print output
y_conv_2 = sess.run(output,{input_x:mnist.test.images})
print "y_conv_2", y_conv_2
# Test trained model
#y__2 = tf.placeholder("float", [None, 10])
y__2 = mnist.test.labels;
correct_prediction_2 = tf.equal(tf.argmax(y_conv_2, 1), tf.argmax(y__2, 1))
print "correct_prediction_2", correct_prediction_2
accuracy_2 = tf.reduce_mean(tf.cast(correct_prediction_2, "float"))
print "accuracy_2", accuracy_2
print "check accuracy %g" % accuracy_2.eval()
以上是关于python Tensorflow读写.pb的主要内容,如果未能解决你的问题,请参考以下文章
吴裕雄 python 神经网络——TensorFlow pb文件保存方法
修改 tensorflow savedmodel pb 文件以使用自定义操作进行推理
Tensorflow实现LeNet5网络并保存pb模型,实现自定义的手写数字识别(附opencv-python调用代码)