python 时间分布在Keras的CNN + LSTM
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python 时间分布在Keras的CNN + LSTM相关的知识,希望对你有一定的参考价值。
def defModel():
model = Sequential()
#Izda.add(TimeDistributed(
# Convolution2D(40,3,3,border_mode='same'), input_shape=(sequence_lengths, 1,8,10)))
model.add(
TimeDistributed(
Conv2D(32, (7, 7), padding='same', strides = 2),
input_shape=(None, 540, 960, 2)))
model.add(Activation('relu'))
model.add(TimeDistributed(Conv2D(64, (5, 5), padding='same', strides = 2)))
model.add(Activation('relu'))
#model.add(TimeDistributed(MaxPooling2D((2,2), data_format = 'channels_first', name='pool1')))
model.add(TimeDistributed(Conv2D(128, (5, 5), padding='same', strides = 2)))
model.add(Activation('relu'))
model.add(TimeDistributed(Conv2D(128, (3, 3), padding='same')))
model.add(Activation('relu'))
model.add(TimeDistributed(Conv2D(256, (3, 3), padding='same', strides = 2)))
model.add(Activation('relu'))
model.add(TimeDistributed(Conv2D(256, (3, 3), padding='same')))
model.add(Activation('relu'))
model.add(TimeDistributed(Conv2D(256, (3, 3), padding='same', strides = 2)))
model.add(Activation('relu'))
model.add(TimeDistributed(Conv2D(256, (3, 3), padding='same')))
model.add(Activation('relu'))
model.add(TimeDistributed(Conv2D(512, (3, 3), padding='same', strides = 2)))
model.add(Activation('relu'))
#model.add(TimeDistributed(MaxPooling2D((2,2), data_format = 'channels_first', name='pool1')))
#model.add(TimeDistributed(Conv2D(32, (1, 1), data_format = 'channels_first')))
#model.add(Activation('relu'))
model.add(TimeDistributed(Flatten()))
#model.add(TimeDistributed(Dense(512, name="first_dense" )))
#model.add(LSTM(num_classes, return_sequences=True))
model.add(LSTM(512 , return_sequences=True))
model.add(LSTM(512))
model.add(Dense(128))
model.add(Dense(3))
model.compile(loss='mean_squared_error', optimizer='adam') #,
#metrics=['accuracy'])
plot_model(model, to_file='model/model.png')
plot_model(model, to_file='model/model_detail.png', show_shapes=True)
return model
以上是关于python 时间分布在Keras的CNN + LSTM的主要内容,如果未能解决你的问题,请参考以下文章
使用Python,Keras和TensorFlow训练第一个CNN
python Keras建立CNN模型的模板
你如何在 Python 中使用 Keras LeakyReLU?
python KerasによるCNNの実装例
python keras_cnn_mnist.py
python keras_cnn_cifar10.py