text `gp_minimize`结果问题的示例
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了text `gp_minimize`结果问题的示例相关的知识,希望对你有一定的参考价值。
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2018-04-29T09:15:21.945886Z",
"start_time": "2018-04-29T09:15:21.586972Z"
}
},
"outputs": [],
"source": [
"from skopt import gp_minimize\n",
"from skopt.space import Integer"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2018-04-29T09:15:21.951330Z",
"start_time": "2018-04-29T09:15:21.948290Z"
}
},
"outputs": [],
"source": [
"def obj_fun(x):\n",
" return 1"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2018-04-29T09:15:21.967865Z",
"start_time": "2018-04-29T09:15:21.953400Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"[Integer(low=-2.0, high=2.0)]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dimensions = [Integer(low=-2.0, high=2.0, name=\"Foobar\")]\n",
"dimensions"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2018-04-29T09:15:22.060883Z",
"start_time": "2018-04-29T09:15:21.969834Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
" fun: 1\n",
" func_vals: array([1])\n",
" models: [GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,\n",
" kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=1),\n",
" n_restarts_optimizer=2, noise='gaussian', normalize_y=True,\n",
" optimizer='fmin_l_bfgs_b', random_state=1854753297)]\n",
" random_state: <mtrand.RandomState object at 0x7f7df40d0b40>\n",
" space: Space([Integer(low=-2.0, high=2.0)])\n",
" specs: {'function': 'base_minimize', 'args': {'n_restarts_optimizer': 5, 'y0': None, 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,\n",
" kernel=1**2 * Matern(length_scale=1, nu=2.5),\n",
" n_restarts_optimizer=2, noise='gaussian', normalize_y=True,\n",
" optimizer='fmin_l_bfgs_b', random_state=1854753297), 'n_jobs': 1, 'func': <function obj_fun at 0x7f7dc8413158>, 'random_state': <mtrand.RandomState object at 0x7f7df40d0b40>, 'callback': None, 'xi': 0.01, 'n_random_starts': 1, 'dimensions': Space([Integer(low=-2.0, high=2.0)]), 'verbose': False, 'n_calls': 1, 'kappa': 1.96, 'acq_func': 'gp_hedge', 'x0': None, 'acq_optimizer': 'auto', 'n_points': 10000}}\n",
" x: [-1]\n",
" x_iters: [[-1]]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"res = gp_minimize(obj_fun,\n",
" dimensions,\n",
" n_calls=1,\n",
" n_random_starts=1)\n",
"res"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"ExecuteTime": {
"end_time": "2018-04-29T09:15:22.168280Z",
"start_time": "2018-04-29T09:15:22.062777Z"
}
},
"outputs": [
{
"ename": "AssertionError",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-5-64e1417ccabc>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"specs\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"args\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"dimensions\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdimensions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"Foobar\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mAssertionError\u001b[0m: "
]
}
],
"source": [
"assert res[\"specs\"][\"args\"][\"dimensions\"].dimensions[0].name == \"Foobar\""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}
以上是关于text `gp_minimize`结果问题的示例的主要内容,如果未能解决你的问题,请参考以下文章
skopt 的 gp_minimize() 函数引发 ValueError: array must not contain infs or NaNs