使用 vmap 时,Jax 不支持不可散列的静态参数
Posted
技术标签:
【中文标题】使用 vmap 时,Jax 不支持不可散列的静态参数【英文标题】:Non-hashable static arguments are not supported in Jax when using vmap 【发布时间】:2021-04-17 11:29:44 【问题描述】:这与this question 有关。经过一番工作,我设法将其更改为最后一个错误。代码现在看起来像这样。
import jax.numpy as jnp
from jax import grad, jit, value_and_grad
from jax import vmap, pmap
from jax import random
import jax
from jax import lax
from jax import custom_jvp
def p_tau(z, tau, alpha=1.5):
return jnp.clip((alpha - 1) * z - tau, 0) ** (1 / (alpha - 1))
def get_tau(tau, tau_max, tau_min, z_value):
return lax.cond(z_value < 1,
lambda _: (tau, tau_min),
lambda _: (tau_max, tau),
operand=None
)
def body(kwargs, x):
tau_min = kwargs['tau_min']
tau_max = kwargs['tau_max']
z = kwargs['z']
alpha = kwargs['alpha']
tau = (tau_min + tau_max) / 2
z_value = p_tau(z, tau, alpha).sum()
taus = get_tau(tau, tau_max, tau_min, z_value)
tau_max, tau_min = taus[0], taus[1]
return 'tau_min': tau_min, 'tau_max': tau_max, 'z': z, 'alpha': alpha, None
@jax.partial(jax.jit, static_argnums=(2,))
def map_row(z_input, alpha, T):
z = (alpha - 1) * z_input
tau_min, tau_max = jnp.min(z) - 1, jnp.max(z) - z.shape[0] ** (1 - alpha)
result, _ = lax.scan(body, 'tau_min': tau_min, 'tau_max': tau_max, 'z': z, 'alpha': alpha, xs=None,
length=T)
tau = (result['tau_max'] + result['tau_min']) / 2
result = p_tau(z, tau, alpha)
return result / result.sum()
@jax.partial(jax.jit, static_argnums=(1,3,))
def _entmax(input, axis=-1, alpha=1.5, T=20):
result = vmap(jax.partial(map_row, alpha, T), axis)(input)
return result
@jax.partial(custom_jvp, nondiff_argnums=(1, 2, 3,))
def entmax(input, axis=-1, alpha=1.5, T=10):
return _entmax(input, axis, alpha, T)
@jax.partial(jax.jit, static_argnums=(0,2,))
def _entmax_jvp_impl(axis, alpha, T, primals, tangents):
input = primals[0]
Y = entmax(input, axis, alpha, T)
gppr = Y ** (2 - alpha)
grad_output = tangents[0]
dX = grad_output * gppr
q = dX.sum(axis=axis) / gppr.sum(axis=axis)
q = jnp.expand_dims(q, axis=axis)
dX -= q * gppr
return Y, dX
@entmax.defjvp
def entmax_jvp(axis, alpha, T, primals, tangents):
return _entmax_jvp_impl(axis, alpha, T, primals, tangents)
import numpy as np
input = jnp.array(np.random.randn(64, 10)).block_until_ready()
weight = jnp.array(np.random.randn(64, 10)).block_until_ready()
def toy(input, weight):
return (weight*entmax(input, 0, 1.5, 20)).sum()
jax.jit(value_and_grad(toy))(input, weight)
这导致(我希望)是最终的错误,即
Non-hashable static arguments are not supported, as this can lead to unexpected cache-misses. Static argument (index 2) of type <class 'jax.interpreters.batching.BatchTracer'> for function map_row is non-hashable.
这很奇怪,因为我想我已经标记了每一个地方 axis
似乎是静态的,但它仍然告诉我它被追踪了。
【问题讨论】:
【参考方案1】:当您编写带有位置参数的partial
函数时,首先传递这些参数。所以这个:
jax.partial(map_row, alpha, T)
本质上等价于:
lambda z_input: map_row(alpha, T, z_input)
注意参数的错误顺序 - 这就是导致错误的原因:您将z_input
(一个不可散列的跟踪器)传递给一个预期为静态的参数。
您可以通过将上面的 partial
语句替换为:
lambda z: map_row(z, alpha, T)
然后您的代码将正确运行。
【讨论】:
以上是关于使用 vmap 时,Jax 不支持不可散列的静态参数的主要内容,如果未能解决你的问题,请参考以下文章
Jax 矢量化:vmap 和/或 numpy.vectorize?
TypeError:使用一组 UDT 创建 Cassandra Python 驱动程序模型时不可散列的类型 UserType