我不明白出了啥问题 InvalidArgumentError: Conv2DCustomBackpropInputOp only support NHWC
Posted
技术标签:
【中文标题】我不明白出了啥问题 InvalidArgumentError: Conv2DCustomBackpropInputOp only support NHWC【英文标题】:I dont understand what is wrong InvalidArgumentError: Conv2DCustomBackpropInputOp only supports NHWC我不明白出了什么问题 InvalidArgumentError: Conv2DCustomBackpropInputOp only support NHWC 【发布时间】:2020-06-18 17:28:03 【问题描述】:我正在尝试在调制https://github.com/radioML/examples/blob/master/modulation_recognition/RML2016.10a_VTCNN2_example.ipynb 上执行此示例笔记本
执行后
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D , Reshape , ZeroPadding2D,BatchNormalization
from tensorflow.keras.callbacks import EarlyStopping
model = Sequential()
model.add(Reshape([1]+in_shp, input_shape=in_shp))
model.add(ZeroPadding2D((0, 2), data_format="channels_first"))
model.add(Conv2D(256, (1,3), data_format="channels_first"))
model.add(Dropout(0.5))
model.add(ZeroPadding2D((0, 1), data_format="channels_first"))
model.add(Conv2D(80, (2 ,3), data_format="channels_first" , activation="relu"))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(len(classes) , activation='softmax'))
model.add(Activation('softmax'))
model.add(Reshape([len(classes)]))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
我明白了
Model: "sequential_4"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
reshape_7 (Reshape) (None, 1, 2, 128) 0
_________________________________________________________________
zero_padding2d_8 (ZeroPaddin (None, 1, 2, 132) 0
_________________________________________________________________
conv2d_8 (Conv2D) (None, 256, 2, 130) 1024
_________________________________________________________________
dropout_10 (Dropout) (None, 256, 2, 130) 0
_________________________________________________________________
zero_padding2d_9 (ZeroPaddin (None, 256, 2, 132) 0
_________________________________________________________________
conv2d_9 (Conv2D) (None, 80, 1, 130) 122960
_________________________________________________________________
dropout_11 (Dropout) (None, 80, 1, 130) 0
_________________________________________________________________
flatten_3 (Flatten) (None, 10400) 0
_________________________________________________________________
dense_6 (Dense) (None, 256) 2662656
_________________________________________________________________
dropout_12 (Dropout) (None, 256) 0
_________________________________________________________________
dense_7 (Dense) (None, 11) 2827
_________________________________________________________________
activation_3 (Activation) (None, 11) 0
_________________________________________________________________
reshape_8 (Reshape) (None, 11) 0
=================================================================
Total params: 2,789,467
Trainable params: 2,789,467
Non-trainable params: 0
_________________________________________________________________
然后当我运行它时
model_fit(model, X_train, Y_train, test_idx)
我收到了这个错误
**InvalidArgumentError: Conv2DCustomBackpropInputOp only supports NHWC.**
[[node Conv2DBackpropInput (defined at <ipython-input-17-9cd1191bc59a>:3) ]] [Op:__inference_distributed_function_3032]
Function call stack:
distributed_function
当我在其他机器上运行相同的代码时,它可以工作。所以我卸载了 anaconda、Keras、TensorFlow 并重新安装了所有东西。
inp_shp = [2, 128]
X_train.shape = (110000, 2, 128)
【问题讨论】:
【参考方案1】:NHWC 代表 Num_samples x Height x Width x Channels。
你有X_train.shape = (110000, 2, 128)
,但是如果你有灰度图像,你应该传递给模型的应该是这个形状X_train.shape = (110000, 2, 128, 1)
,如果它们是RGB图像,则应该是X_train.shape = (110000, 2, 128, 3)
。你inp_shape
也应该改变。
【讨论】:
非常感谢。所以我在 X_train 和 inp_shape 上使用 reshape?还是有其他方法可以实现您的建议? 可能类似于:X_train = np.expand_dims(X_train, axis = 3)
所以我更改了X_train.shape = (110000, 2, 128, 1)
和inp_shp = [2, 128, 1]
并执行了。然后我得到了,ValueError: Input 0 of layer zero_padding2d_17 is incompatible with the layer: expected ndim=4, found ndim=5. Full shape received: [None, 1, 2, 128, 1]
以上是关于我不明白出了啥问题 InvalidArgumentError: Conv2DCustomBackpropInputOp only support NHWC的主要内容,如果未能解决你的问题,请参考以下文章
discord.js 我的代码不起作用,在终端中显示 typeError 但我不知道出了啥问题
C#多线程 - 出了啥问题,如何使用 AutoResetEvent