Python statsmodels ARIMA 预测

Posted

技术标签:

【中文标题】Python statsmodels ARIMA 预测【英文标题】:Python statsmodels ARIMA Forecast 【发布时间】:2016-02-13 04:56:34 【问题描述】:

我正在尝试使用 python statsmodels 进行样本外预测。我不想只预测训练集末尾的下 x 个值,但我想一次预测一个值,并在预测时考虑实际值。换句话说,我想做滚动 1 期预测,但我不想每次都重新校准模型。我能找到的最接近的帖子在这里:

ARMA out-of-sample prediction with statsmodels

但是,这使用的是 ARMA 而不是 ARIMA。如何使用 ARIMA 实现这一目标,或者有更好的方法吗?我知道我实际上可以自己提取系数并应用一个函数,但在我的代码中,我使用的 ARIMA 模型随着时间的推移是动态的,因此使用的系数和滞后值的数量不是恒定的。任何帮助将不胜感激。

【问题讨论】:

【参考方案1】:

据我了解,你不想每次都运行模型,这个问题可以有两种解决方案

    以 pickle 格式提取模型,然后每次都使用相同的模型来创建预测。 从模型中提取系数并将其用于计算。

这两个选项的代码如下。

    Pickle 创建和进一步使用。

    import pmdarima as pm
    model = pm.auto_arima(train,
                          exogenous=exogenous_train,
                          start_p=1, start_q=1,
                          test='adf',       # use adftest to find optimal 'd'
                          max_p=5, max_q=5, # maximum p and q
                          m=12,              # frequency of series
                          d=None,           # let model determine 'd'
                          seasonal=True,   # No Seasonality
                          start_P=0, 
                          D=1, 
                          trace=True,
                          error_action='ignore',  
                          suppress_warnings=True, 
                          stepwise=True)
    
    filename = 'ARIMA_Model.sav'
    pickle.dump(model, open(filename, 'wb')) ## This will create a pickle file
    
    ## Load Model
    model = pickle.load(open(filename, 'rb'))
    
    ## Forecast
    fc, confint = model.predict(n_periods=1, 
                        exogenous=exogenous_test_df,
                        return_conf_int=True)
    

    提取模型系数,我已将 pmdarima 用于 ARIMA,所以这就是提取系数的方法。我想它在其他 ARIMA 库中应该是一样的。

    Model_dict = model.to_dict()
    Model_Order = Model_dict['order']
    Model_seasonal_order = Model_dict['seasonal_order'][1]
    

【讨论】:

【参考方案2】:

如果我是对的,我遇到了非常相似的问题:基本上我想将我的时间序列分成训练集和测试集,训练模型,然后根据过去的历史任意预测测试集的任何元素。不过,我没有设法使用 ARIMA statsmodels 类来实现它。

这就是我使用 statsmodels 的方法:我已将一阶差分应用于序列以实现平稳性,并计算了 arma 模型:

model = sm.tsa.ARMA(fitting_data, order=(p, q), dates=fitting_dates).fit()

我已将 arma 模型转换为纯 ar 模型:

ar_params = model.arparams
ma_params = model.maparams

ar_coefficients = arma2ar(ar_params, ma_params, nobs=final_ar_coeff)

nobs 参数会影响您将获得的自回归系数的数量。我尝试了几个值,将其增加,直到观察到预测没有显着变化。一旦你得到你的预测w.r.t。不同的系列,你想把它们带回原来的系列。我实现了一种方法,给定一个或一系列预测以及预测之前的最后一个已知元素,计算原始系列中的预测:

def differenced_series_to_original(values, starting_value):

    original_series = [starting_value]
    [original_series.append(original_series[-1]+i) for i in values]

    return original_series[1:]

显然 values 是您的预测列表,starting_value 是最后一个已知元素。希望对您的问题有所帮助。

【讨论】:

以上是关于Python statsmodels ARIMA 预测的主要内容,如果未能解决你的问题,请参考以下文章

Colab 中没有名为“statsmodels.tsa.arima”的模块,但 Pycharm 中没有

Statsmodels ARIMA - 使用预测()和预测()的不同结果

statsmodels.tsa.arima_model预测时报错TypeError: int() argument must be a string, a bytes-like object or a

等价于 python 的 auto.arima()

使用 statsmodels.tsa 返回训练集预测值

时间序列分析ARMA模型原理及Python statsmodels实践(下)