使用 statsmodels 进行 Holt-Winters 时间序列预测

Posted

技术标签:

【中文标题】使用 statsmodels 进行 Holt-Winters 时间序列预测【英文标题】:Holt-Winters time series forecasting with statsmodels 【发布时间】:2018-11-19 23:32:31 【问题描述】:

我尝试使用holt-winters model 进行预测,如下所示,但我不断得到与我的预期不一致的预测。我还展示了情节的可视化

Train = Airline[:130]
Test = Airline[129:]

from statsmodels.tsa.holtwinters import Holt

y_hat_avg = Test.copy()
fit1 = Holt(np.asarray(Train['Passengers'])).fit()
y_hat_avg['Holt_Winter'] = fit1.predict(start=1,end=15)
plt.figure(figsize=(16,8))
plt.plot(Train.index, Train['Passengers'], label='Train')
plt.plot(Test.index,Test['Passengers'], label='Test')
plt.plot(y_hat_avg.index,y_hat_avg['Holt_Winter'], label='Holt_Winter')
plt.legend(loc='best')
plt.savefig('Holt_Winters.jpg')

我不确定我在这里缺少什么。

预测似乎适合训练数据的早期部分

【问题讨论】:

你可以在这里发布时间序列数据吗? 数据可以在这里找到datamarket.com/data/set/22u3/…点击导出。我对数据进行了一些预处理,并将月份列转换为索引。 我猜你的索引 start=1,end=15 是错误的。在图中,预测看起来像是针对前几次观察。尝试使用 start=129 或 start=130 进行预测。 【参考方案1】:

错误的主要原因是您的起始值和结束值。它预测第一次观察的值,直到第十五次。但是,即使您更正了这一点,Holt 也仅包含趋势部分,您的预测不会产生季节性影响。而是将ExponentialSmoothing 与季节性参数一起使用。

这是您的数据集的一个工作示例:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.holtwinters import ExponentialSmoothing

df = pd.read_csv('/home/ayhan/international-airline-passengers.csv', 
                 parse_dates=['Month'], 
                 index_col='Month'
)
df.index.freq = 'MS'
train, test = df.iloc[:130, 0], df.iloc[130:, 0]
model = ExponentialSmoothing(train, seasonal='mul', seasonal_periods=12).fit()
pred = model.predict(start=test.index[0], end=test.index[-1])

plt.plot(train.index, train, label='Train')
plt.plot(test.index, test, label='Test')
plt.plot(pred.index, pred, label='Holt-Winters')
plt.legend(loc='best')

产生以下情节:

【讨论】:

嘿,你能告诉我df.index.freq='MS'在你的代码中的作用吗? 为了建立一个平滑模型 statsmodels 需要知道你的数据的频率(无论是每天、每月还是等等)。 MS 表示月初,所以我们说它是我们在每个月初观察到的月度数据。 感谢您的回复。我的数据点滞后 5 分钟。那么,我的数据频率应该是多少?有什么想法吗? 我觉得应该是'5T' @ayhan 如果我有一个月的数据并且频率是“10T”并且每天都有一个趋势,即(24 小时)我的seasonalseasonal_periods 参数应该是什么?我应该使用season be 'mul' 和seasonal_periods=1 一个月吗?【参考方案2】:

这是对上述答案的即兴创作 https://***.com/users/2285236/ayhan

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.holtwinters import ExponentialSmoothing
from sklearn.metrics import mean_squared_error
from math import sqrt

from matplotlib.pylab import rcParams
rcParams['figure.figsize'] = 15, 7

df = pd.read_csv('D:/WORK/international-airline-passengers.csv', 
                 parse_dates=['Month'], 
                 index_col='Month'
)
df.index.freq = 'MS'
train, test = df.iloc[:132, 0], df.iloc[132:, 0]
# model = ExponentialSmoothing(train, seasonal='mul', seasonal_periods=12).fit()
model = ExponentialSmoothing(train, trend='add', seasonal='add', seasonal_periods=12, damped=True)
hw_model = model.fit(optimized=True, use_boxcox=False, remove_bias=False)
pred = hw_model.predict(start=test.index[0], end=test.index[-1])

plt.plot(train.index, train, label='Train')
plt.plot(test.index, test, label='Test')
plt.plot(pred.index, pred, label='Holt-Winters')
plt.legend(loc='best');

这是我获得最佳参数的方法

def exp_smoothing_configs(seasonal=[None]):
    models = list()
    # define config lists
    t_params = ['add', 'mul', None]
    d_params = [True, False]
    s_params = ['add', 'mul', None]
    p_params = seasonal
    b_params = [True, False]
    r_params = [True, False]
    # create config instances
    for t in t_params:
        for d in d_params:
            for s in s_params:
                for p in p_params:
                    for b in b_params:
                        for r in r_params:
                            cfg = [t,d,s,p,b,r]
                            models.append(cfg)
    return models

cfg_list = exp_smoothing_configs(seasonal=[12]) #[0,6,12]

edf = df['Passengers']
ts = edf[:'1959-12-01'].copy()
ts_v = edf['1960-01-01':].copy()
ind = edf.index[-12:]  # this will select last 12 months' indexes

print("Holt's Winter Model")
best_RMSE = np.inf
best_config = []
t1 = d1 = s1 = p1 = b1 = r1 = ''
for j in range(len(cfg_list)):
    print(j)
    try:
        cg = cfg_list[j]
        print(cg)
        t,d,s,p,b,r = cg
        train = edf[:'1959'].copy()
        test = edf['1960-01-01':'1960-12-01'].copy()
        # define model
        if (t == None):
            model = ExponentialSmoothing(ts, trend=t, seasonal=s, seasonal_periods=p)
        else:
            model = ExponentialSmoothing(ts, trend=t, damped=d, seasonal=s, seasonal_periods=p)
        # fit model
        model_fit = model.fit(optimized=True, use_boxcox=b, remove_bias=r)
        # make one step forecast
        y_forecast = model_fit.forecast(12)
        rmse = np.sqrt(mean_squared_error(ts_v,y_forecast))
        print(rmse)
        if rmse < best_RMSE:
            best_RMSE = rmse
            best_config = cfg_list[j]
    except:
       continue

评估模型的功能

def model_eval(y, predictions):

    # Import library for metrics
    from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error

    # Mean absolute error (MAE)
    mae = mean_absolute_error(y, predictions)

    # Mean squared error (MSE)
    mse = mean_squared_error(y, predictions)


    # SMAPE is an alternative for MAPE when there are zeros in the testing data. It
    # scales the absolute percentage by the sum of forecast and observed values
    SMAPE = np.mean(np.abs((y - predictions) / ((y + predictions)/2))) * 100


    # Calculate the Root Mean Squared Error
    rmse = np.sqrt(mean_squared_error(y, predictions))

    # Calculate the Mean Absolute Percentage Error
    # y, predictions = check_array(y, predictions)
    MAPE = np.mean(np.abs((y - predictions) / y)) * 100

    # mean_forecast_error
    mfe = np.mean(y - predictions)

    # NMSE normalizes the obtained MSE after dividing it by the test variance. It
    # is a balanced error measure and is very effective in judging forecast
    # accuracy of a model.

    # normalised_mean_squared_error
    NMSE = mse / (np.sum((y - np.mean(y)) ** 2)/(len(y)-1))


    # theil_u_statistic
    # It is a normalized measure of total forecast error.
    error = y - predictions
    mfe = np.sqrt(np.mean(predictions**2))
    mse = np.sqrt(np.mean(y**2))
    rmse = np.sqrt(np.mean(error**2))
    theil_u_statistic =  rmse / (mfe*mse)


    # mean_absolute_scaled_error
    # This evaluation metric is used to over come some of the problems of MAPE and
    # is used to measure if the forecasting model is better than the naive model or
    # not.


    # Print metrics
    print('Mean Absolute Error:', round(mae, 3))
    print('Mean Squared Error:', round(mse, 3))
    print('Root Mean Squared Error:', round(rmse, 3))
    print('Mean absolute percentage error:', round(MAPE, 3))
    print('Scaled Mean absolute percentage error:', round(SMAPE, 3))
    print('Mean forecast error:', round(mfe, 3))
    print('Normalised mean squared error:', round(NMSE, 3))
    print('Theil_u_statistic:', round(theil_u_statistic, 3))

print(best_RMSE, best_config)

t1,d1,s1,p1,b1,r1 = best_config

if t1 == None:
    hw_model1 = ExponentialSmoothing(ts, trend=t1, seasonal=s1, seasonal_periods=p1)
else:
    hw_model1 = ExponentialSmoothing(ts, trend=t1, seasonal=s1, seasonal_periods=p1, damped=d1)

fit2 = hw_model1.fit(optimized=True, use_boxcox=b1, remove_bias=r1)

pred_HW = fit2.predict(start=pd.to_datetime('1960-01-01'), end = pd.to_datetime('1960-12-01'))
# pred_HW = fit2.forecast(12)

pred_HW = pd.Series(data=pred_HW, index=ind)
df_pass_pred = pd.concat([df, pred_HW.rename('pred_HW')], axis=1)

print(model_eval(ts_v, pred_HW))
print('-*-'*20)

# 15.570830579664698 ['add', True, 'add', 12, False, False]
# Mean Absolute Error: 10.456
# Mean Squared Error: 481.948
# Root Mean Squared Error: 15.571
# Mean absolute percentage error: 2.317
# Scaled Mean absolute percentage error: 2.273
# Mean forecast error: 483.689
# Normalised mean squared error: 0.04
# Theil_u_statistic: 0.0
# None
# -*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*-

总结:

新模型结果:

Mean Absolute Error: 10.456
Mean Squared Error: 481.948
Root Mean Squared Error: 15.571
Mean absolute percentage error: 2.317
Scaled Mean absolute percentage error: 2.273
Mean forecast error: 483.689
Normalised mean squared error: 0.04
Theil_u_statistic: 0.0

旧模型结果:

Mean Absolute Error: 20.682
Mean Squared Error: 481.948
Root Mean Squared Error: 23.719
Mean absolute percentage error: 4.468
Scaled Mean absolute percentage error: 4.56
Mean forecast error: 466.704
Normalised mean squared error: 0.093
Theil_u_statistic: 0.0

奖励:

您将获得这个不错的数据框,您可以在其中将原始值与预测值进行比较。

df_pass_pred['1960':]

输出

            Passengers     pred_HW
Month                             
1960-01-01         417  417.826543
1960-02-01         391  400.452916
1960-03-01         419  461.804259
1960-04-01         461  450.787208
1960-05-01         472  472.695903
1960-06-01         535  528.560823
1960-07-01         622  601.265794
1960-08-01         606  608.370401
1960-09-01         508  508.869849
1960-10-01         461  452.958727
1960-11-01         390  407.634391
1960-12-01         432  437.385058

【讨论】:

以上是关于使用 statsmodels 进行 Holt-Winters 时间序列预测的主要内容,如果未能解决你的问题,请参考以下文章

使用 statsmodels 进行 ARMA 样本外预测

为啥当我使用 statsmodels 进行 OLS 和使用 scikit 进行 PooledOLS 时得到相同的结果?

使用 statsmodels 进行 Holt-Winters 时间序列预测

使用 statsmodel 中的 arma_order_select_ic 进行 ARMA 模型顺序选择

statsmodels中方差分析表结果解析

使用 statsmodels.formula.api 中的 ols - 如何删除常数项?