如何使用 OpenCV 识别夜空照片中的星星?

Posted

技术标签:

【中文标题】如何使用 OpenCV 识别夜空照片中的星星?【英文标题】:How to recognize the stars in the photo of the night sky using OpenCV? 【发布时间】:2019-11-18 00:59:44 【问题描述】:

我想编写一个程序来识别夜空照片中的星星并标记它们。我是 DSP 的新手,想问一下如何实现这一点。我草拟了一个代码草案:

#include "main.hpp"

using namespace std;
//using namespace cv;

int main(int argc, char *argv[])

    const char *imageName = (argc >= 2) ?   argv[1] : "4.jpg";
    int64_t processTime;
    cv::Mat imageSource, result1, result2, grayScaledImage;

    /// Create and initialize the kerenel matrix
    cv::Mat kernelMatrix = (cv::Mat_<char>(3, 3) << 0, -1, 0,
                                                -1, 5, -1,
                                                0, -1, 0);

    cout << "Start..." << endl;

    if ((argc == 3) && !(strcmp("G", argv[2])))     imageSource = cv::imread(cv::samples::findFile(imageName), cv::IMREAD_GRAYSCALE);
    else                                            imageSource = cv::imread(cv::samples::findFile(imageName), cv::IMREAD_COLOR);

    /// Check for errors while open
    if (imageSource.empty())
    
        cerr << "Can't open image [" << imageName << "]" << endl;
        exit(EXIT_FAILURE);
    

    processTime = cv::getTickCount();                                           /// Start timer
    //img_proc::sharpening(imageSource, result1);                                 /// Process image
    cv::cvtColor(imageSource, grayScaledImage, cv::COLOR_BGR2GRAY);
    cv::filter2D(grayScaledImage, result1, imageSource.depth(), kernelMatrix);      /// Process image
    processTime = (cv::getTickCount() - processTime) / cv::getTickFrequency();  /// Stop timer and fix the process time

    /// Create windows for pictures
    cv::namedWindow("Source image", cv::WINDOW_AUTOSIZE);
    cv::namedWindow("Result image (1)", cv::WINDOW_AUTOSIZE);
    /// Show images
    cv::imshow("Source image", imageSource);
    cv::imshow("Result image (1)", result1);
    cv::waitKey(0);

    /// The second method
    processTime = cv::getTickCount();                                           /// Start timer
    cv::Sobel(result1, result2, CV_32F, 1, 0);                                  /// S
    processTime = (cv::getTickCount() - processTime) / cv::getTickFrequency();  /// Stop timer and fix the process time

    cv::namedWindow("Result image (2)", cv::WINDOW_AUTOSIZE);
    cv::imshow("Result image (2)", result2);
    cv::waitKey();

    double minVal, maxVal;
    cv::Mat newMat;
    cv::minMaxLoc(result2, &minVal, &maxVal);
    result2.convertTo(newMat, CV_8U, (255.0 / (maxVal - minVal)), (-minVal * 255.0 / (maxVal - minVal)));

    cv::namedWindow("newmat", cv::WINDOW_AUTOSIZE);
    cv::imshow("newmat", newMat);
    cv::waitKey();


    return 0;

因此,我得到以下图像(左侧 - 初始图像,右侧 - 最终图像):

但我想突出显示星星,例如,在灰度图像上用黄色圆圈。我该怎么做?

【问题讨论】:

为什么要专门应用这两个过滤器?你希望从他们那里得到什么?我会尝试对输入图像进行简单的局部最大值搜索。 Nico Schertler,我使用 filter2D 函数来锐化图像,然后尝试使用标记星星的东西。但在我看来,这个任务不需要接下来的两个过滤器(sobel、minMaxloc)。 你试过local maximum search吗? 还有一个叫做H-maxima的方法。本地马克西可以给你一些误报,但当谈到明星时,它不会那么痛苦。 skimage 网站上有很好的文档。此外,如果您不熟悉图像处理,我建议您使用python + scikit-imageopencv 文档相当令人失望。 【参考方案1】:

这是一个 MATLAB 解决方案:

I = imread('Stars.jpg'); %Read image from file
I = I(:, 1:floor(size(I,2)/2-40), :); %Crop the relevant part (left side).
J = rgb2gray(I); %Convert RGB to Grayscale.
BW = imbinarize(I); %Convert to binary image (you have the option to manually select the threshold).
BW2 = bwmorph(BW2, 'shrink', Inf); %Shrink clusters until single pixel is left.

%The shrink operation wasn't good enough, fill hols, and shrink again.
BW3 = bwfill(BW2, 'holes');
BW4 = bwmorph(BW3, 'shrink', Inf);

%Find coordinates where pixel value is 1
[Y, X] =  find(BW4);

%Mark each coordinate with yellow circle.
K = insertMarker(I, [X Y], 'o', 'size', 5, 'color', 'yellow');
figure;imshow(K); %Display result.

很抱歉使用 MATLAB,但使用 OpenCV 需要 100 个小时...

结果:

MATLAB 有丰富的文档,因此您可以通过 Google 搜索了解每个操作。

【讨论】:

以上是关于如何使用 OpenCV 识别夜空照片中的星星?的主要内容,如果未能解决你的问题,请参考以下文章

基于OpenCV修复表格缺失的轮廓--如何识别和修复表格识别中的虚线

人脸识别系统如何区分真人脸和人脸照片?

如何使用 OpenCV 检测图像中的波纹

如何使用 OpenCV 裁剪图像中的白色斑块并制作护照大小的照片

如何开发Java动态人脸识别

怎样识别照片中的二维码