使用 C++ 在 OpenCV 中按深度维度排序
Posted
技术标签:
【中文标题】使用 C++ 在 OpenCV 中按深度维度排序【英文标题】:Sort by a depth dimension in OpenCV with C++ 【发布时间】:2018-09-12 17:28:27 【问题描述】:我有一个多维矩阵,如何按第三维对立方体进行排序?使用opencv的适当功能?
std::vector<int> sz = 3,3,4 ;
cv::Mat M(3, sz.data(), CV_32FC1, cv::Scalar(0));
在文档中只有一个选项
CV_SORT_EVERY_COLUMN //dimension-1
CV_SORT_EVERY_ROW //dimension-2
【问题讨论】:
根据cv::sort
的文档,只能对行或列进行排序,仅此而已。
虽然...暂时将其重新整形为具有 9 行的单通道矩阵,按行排序,然后重新整形。
那么,这(连同我在答案中描述的内容)对您有用吗?我明确使用了cv::Mat1f
,因为你有CV_32FC1
作为数据类型,它让我更简洁。如果您需要,不应该太难修改以使其更通用。
【参考方案1】:
cv::sort
的文档指出:
对矩阵的每一行或每一列进行排序。
因此,您不能使用它直接对第 3 维进行排序...。
但是,您可以利用 in-memory layout 的数据,并将 reshape
转换为 2d Mat。然后您可以按行对其进行排序,并将结果重新整形为原始形状。在这种特殊情况下,您将重塑为一个 9 行 4 列的矩阵。
void sort3rd(cv::Mat1f const& src, cv::Mat1f& dest, int direction)
assert(src.size.dims() == 3);
std::vector<int> original_size(src.size.p, src.size.p + 3);
std::vector<int> new_size original_size[0] * original_size[1], original_size[2] ;
cv::Mat1f temp(src.reshape(1, new_size));
cv::sort(temp, temp, cv::SORT_EVERY_ROW | direction);
dest = temp.reshape(1, original_size);
注意:重塑 mat 的操作非常便宜,只需为共享数据生成一个新的标头即可。
演示代码:
#include <opencv2/opencv.hpp>
#include <numeric>
void dump(cv::Mat1f const& m)
assert(m.size.dims() == 3);
std::cout << "[ ";
for (int r(0); r < m.size[0]; ++r)
for (int c(0); c < m.size[1]; ++c)
for (int d(0); d < m.size[2]; ++d)
std::cout << m.at<float>(r,c,d) << " ";
std::cout << "; ";
std::cout << "\n";
std::cout << " ]\n";
void sort3rd(cv::Mat1f const& src, cv::Mat1f& dest, int direction)
assert(src.size.dims() == 3);
std::vector<int> original_size(src.size.p, src.size.p + 3);
std::vector<int> new_size original_size[0] * original_size[1], original_size[2] ;
cv::Mat1f temp(src.reshape(1, new_size));
std::cout << "Reshaped before sort\n" << temp << "\n";
cv::sort(temp, temp, cv::SORT_EVERY_ROW | direction);
std::cout << "Reshaped after sort\n" << temp << "\n";
dest = temp.reshape(1, original_size);
int main()
std::vector<int> sz3, 3, 4;
cv::Mat1f M(static_cast<int>(sz.size()), sz.data());
std::iota(M.begin(), M.end(), 0.0f);
std::cout << "Input\n";
dump(M);
sort3rd(M, M, cv::SORT_DESCENDING);
std::cout << "Output\n";
dump(M);
return 0;
控制台输出:
Input
[ 0 1 2 3 ; 4 5 6 7 ; 8 9 10 11 ;
12 13 14 15 ; 16 17 18 19 ; 20 21 22 23 ;
24 25 26 27 ; 28 29 30 31 ; 32 33 34 35 ;
]
Reshaped before sort
[0, 1, 2, 3;
4, 5, 6, 7;
8, 9, 10, 11;
12, 13, 14, 15;
16, 17, 18, 19;
20, 21, 22, 23;
24, 25, 26, 27;
28, 29, 30, 31;
32, 33, 34, 35]
Reshaped after sort
[3, 2, 1, 0;
7, 6, 5, 4;
11, 10, 9, 8;
15, 14, 13, 12;
19, 18, 17, 16;
23, 22, 21, 20;
27, 26, 25, 24;
31, 30, 29, 28;
35, 34, 33, 32]
Output
[ 3 2 1 0 ; 7 6 5 4 ; 11 10 9 8 ;
15 14 13 12 ; 19 18 17 16 ; 23 22 21 20 ;
27 26 25 24 ; 31 30 29 28 ; 35 34 33 32 ;
]
【讨论】:
以上是关于使用 C++ 在 OpenCV 中按深度维度排序的主要内容,如果未能解决你的问题,请参考以下文章
C++ OpenCV 2.4.0 findContours 因 Kinect 深度流而崩溃