一个字母游戏问题?

Posted

技术标签:

【中文标题】一个字母游戏问题?【英文标题】:One letter game Issue? 【发布时间】:2011-02-12 20:55:29 【问题描述】:

最近在一次求职面试中,我遇到了以下问题:

    编写一个能够在命令行上运行的脚本为python

    它应该在命令行中包含两个单词(或者,如果您愿意,它可以通过控制台查询用户以提供这两个单词)。

    鉴于这两个词: 一种。确保它们的长度相等 湾。确保它们都是英语有效单词词典中的单词 你下载的那个。

    如果是这样,通过以下一系列步骤计算您是否可以从第一个单词到达第二个单词 一种。您可以一次更改一个字母 湾。每次更改字母时,结果单词也必须存在于字典中 C。您不能添加或删除字母

    如果这两个词是可达的,脚本应该打印出从一个词到另一个词的单一最短路径。

    您可以将 /usr/share/dict/words 用于您的词典。

我的解决方案包括使用广度优先搜索来找到两个单词之间的最短路径。但显然这还不足以得到这份工作:(

你们知道我做错了什么吗?非常感谢。

import collections
import functools
import re

def time_func(func):
    import time

    def wrapper(*args, **kwargs):
        start = time.time()
        res = func(*args, **kwargs)
        timed = time.time() - start

        setattr(wrapper, 'time_taken', timed)
        return res

    functools.update_wrapper(wrapper, func)
    return wrapper

class OneLetterGame:
    def __init__(self, dict_path):
        self.dict_path = dict_path
        self.words = set()

    def run(self, start_word, end_word):
        '''Runs the one letter game with the given start and end words.
        '''
        assert len(start_word) == len(end_word), \
            'Start word and end word must of the same length.'

        self.read_dict(len(start_word))

        path = self.shortest_path(start_word, end_word)
        if not path:
            print 'There is no path between %s and %s (took %.2f sec.)' % (
                start_word, end_word, find_shortest_path.time_taken)
        else:
            print 'The shortest path (found in %.2f sec.) is:\n=> %s' % (
                self.shortest_path.time_taken, ' -- '.join(path))

    def _bfs(self, start):
        '''Implementation of breadth first search as a generator.

        The portion of the graph to explore is given on demand using get_neighboors.
        Care was taken so that a vertex / node is explored only once.
        '''
        queue = collections.deque([(None, start)])
        inqueue = set([start])

        while queue:
            parent, node = queue.popleft()
            yield parent, node

            new = set(self.get_neighbours(node)) - inqueue
            inqueue = inqueue | new
            queue.extend([(node, child) for child in new])

    @time_func
    def shortest_path(self, start, end):
        '''Returns the shortest path from start to end using bfs.
        '''
        assert start in self.words, 'Start word not in dictionnary.'
        assert end in self.words, 'End word not in dictionnary.'

        paths = None: []
        for parent, child in self._bfs(start):
            paths[child] = paths[parent] + [child]
            if child == end:
                return paths[child]
        return None

    def get_neighbours(self, word):
        '''Gets every word one letter away from the a given word.

        We do not keep these words in memory because bfs accesses 
        a given vertex only once.
        '''
        neighbours = []

        p_word = ['^' + word[0:i] + '\w' + word[i+1:] + '$' 
            for i, w in enumerate(word)]
        p_word = '|'.join(p_word)

        for w in self.words:
            if w != word and re.match(p_word, w, re.I|re.U):
                neighbours += [w]
        return neighbours

    def read_dict(self, size):
        '''Loads every word of a specific size from the dictionnary into memory.
        '''
        for l in open(self.dict_path):
            l = l.decode('latin-1').strip().lower()
            if len(l) == size:
                self.words.add(l)

if __name__ == '__main__':
    import sys
    if len(sys.argv) not in [3, 4]:
        print 'Usage: python one_letter_game.py start_word end_word'
    else:
        g = OneLetterGame(dict_path = '/usr/share/dict/words')
        try:
            g.run(*sys.argv[1:])
        except AssertionError, e:
            print e

感谢您提供的所有出色答案。我认为真正吸引我的是我每次都会遍历字典中的所有单词以考虑可能的单词邻居。相反,我可以使用 Duncan 和 Matt Anderson 指出的倒排索引。 A* 方法肯定也会有所帮助。非常感谢,现在我知道我做错了什么。

下面是倒排索引的相同代码:

import collections
import functools
import re

def time_func(func):
    import time

    def wrapper(*args, **kwargs):
        start = time.time()
        res = func(*args, **kwargs)
        timed = time.time() - start

        setattr(wrapper, 'time_taken', timed)
        return res

    functools.update_wrapper(wrapper, func)
    return wrapper

class OneLetterGame:
    def __init__(self, dict_path):
        self.dict_path = dict_path
        self.words = 

    def run(self, start_word, end_word):
        '''Runs the one letter game with the given start and end words.
        '''
        assert len(start_word) == len(end_word), \
            'Start word and end word must of the same length.'

        self.read_dict(len(start_word))

        path = self.shortest_path(start_word, end_word)
        if not path:
            print 'There is no path between %s and %s (took %.2f sec.)' % (
                start_word, end_word, self.shortest_path.time_taken)
        else:
            print 'The shortest path (found in %.2f sec.) is:\n=> %s' % (
                self.shortest_path.time_taken, ' -- '.join(path))

    def _bfs(self, start):
        '''Implementation of breadth first search as a generator.

        The portion of the graph to explore is given on demand using get_neighboors.
        Care was taken so that a vertex / node is explored only once.
        '''
        queue = collections.deque([(None, start)])
        inqueue = set([start])

        while queue:
            parent, node = queue.popleft()
            yield parent, node

            new = set(self.get_neighbours(node)) - inqueue
            inqueue = inqueue | new
            queue.extend([(node, child) for child in new])

    @time_func
    def shortest_path(self, start, end):
        '''Returns the shortest path from start to end using bfs.
        '''
        assert self.in_dictionnary(start), 'Start word not in dictionnary.'
        assert self.in_dictionnary(end), 'End word not in dictionnary.'

        paths = None: []
        for parent, child in self._bfs(start):
            paths[child] = paths[parent] + [child]
            if child == end:
                return paths[child]
        return None

    def in_dictionnary(self, word):
        for s in self.get_steps(word):
            if s in self.words:
                return True
        return False

    def get_neighbours(self, word):
        '''Gets every word one letter away from the a given word.
        '''
        for step in self.get_steps(word):
            for neighbour in self.words[step]:
                yield neighbour

    def get_steps(self, word):
        return (word[0:i] + '*' + word[i+1:] 
            for i, w in enumerate(word))

    def read_dict(self, size):
        '''Loads every word of a specific size from the dictionnary into an inverted index.
        '''
        for w in open(self.dict_path):
            w = w.decode('latin-1').strip().lower()
            if len(w) != size:
                continue
            for step in self.get_steps(w):
                if step not in self.words:
                    self.words[step] = [] 
                self.words[step].append(w)

if __name__ == '__main__':
    import sys
    if len(sys.argv) not in [3, 4]:
        print 'Usage: python one_letter_game.py start_word end_word'
    else:
        g = OneLetterGame(dict_path = '/usr/share/dict/words')
        try:
            g.run(*sys.argv[1:])
        except AssertionError, e:
            print e

还有时间对比:

% python one_letter_game_old.py 开心 你好最短路径(在 91.57 秒)是: => 快乐 -- harpy -- 竖琴 -- harts -- 停止 -- 大厅 -- 地狱 -- 你好

% python one_letter_game.py 开心 你好最短路径(在 1.71 秒)是: => 快乐 -- harpy -- 竖琴 -- harts -- 停止 -- 大厅 -- 地狱 -- 你好

【问题讨论】:

我没有检查你的代码,但仅仅因为你没有得到这份工作并不意味着这是你的错误。他们告诉你了吗? 好吧,我想问,但他们的政策是“不允许他们提供进一步的反馈”...... 类似问题:***.com/questions/2534087/… 我同意 MJB。可能有更有效的解决方案,但您的代码看起来不错。如果他们变得含糊不清且不善于交流,我无法想象那会是一个有趣的工作场所。 求职面试问题似乎有点疯狂。除非这是一个互联网类型的问题或与求职面试官类似的情况,否则我不会期望一个完美的解决方案。不过,正如其他人所说,振作起来,仅此并不意味着你没有得到这份工作。有时面试不会成功。 【参考方案1】:

我不会说您的解决方案错误,但它有点慢。有两个原因。

    广度优先搜索将访问所有长度小于所需长度的路径,以及所需长度的部分路径,然后才能给您答案。最佳优先搜索 (A*) 会理想地跳过大多数不相关的路径。

    每次寻找邻居时,您都会检查字典中的每个单词是否有资格作为邻居。正如 Duncan 建议的那样,您可以构建一个数据结构来本质上查找邻居而不是搜索它们。

这是解决您问题的另一种方法:

import collections
import heapq
import time

def distance(start, end):
    steps = 0
    for pos in range(len(start)):
        if start[pos] != end[pos]:
            steps += 1
    return steps


class SearchHeap(object):
    def __init__(self):
        self.on_heap = set()
        self.heap = []

    def push(self, distance, word, path):
        if word in self.on_heap:
            return
        self.on_heap.add(word)
        heapq.heappush(self.heap, ((distance, len(path)), word, path))

    def __len__(self):
        return len(self.heap)

    def pop(self):
        return heapq.heappop(self.heap)


class OneLetterGame(object):
    _word_data = None

    def __init__(self, dict_path):
        self.dict_path = dict_path

    def run(self, start_word, end_word):
        start_time = time.time()
        self._word_data = collections.defaultdict(list)
        if len(start_word) != len(end_word):
            print 'words of different length; no path'
            return

        found_start, found_end = self._load_words(start_word, end_word)
        if not found_start:
            print 'start word %r not found in dictionary' % start_word
            return
        if not found_end:
            print 'end word %r not found in dictionary' % end_word
            return

        search_start_time = time.time()
        path = self._shortest_path(start_word, end_word)
        search_time = time.time() - search_start_time
        print 'search time was %.4f seconds' % search_time

        if path:
            print path
        else:
            print 'no path found from %r to %r' % (start_word, end_word)

        run_time = time.time() - start_time
        print 'total run time was %.4f seconds' % run_time

    def _load_words(self, start_word, end_word):
        found_start, found_end = False, False
        length = len(start_word)
        with open(self.dict_path) as words:
            for word in words:
                word = word.strip()
                if len(word) == length:
                    if start_word == word: found_start = True
                    if end_word == word: found_end = True
                    for bucket in self._buckets_for(word):
                        self._word_data[bucket].append(word)
        return found_start, found_end

    def _shortest_path(self, start_word, end_word):
        heap = SearchHeap()
        heap.push(distance(start_word, end_word), start_word, (start_word,))
        while len(heap):
            dist, word, path = heap.pop()
            if word == end_word:
                return path
            for neighbor in self._neighbors_of(word):
                heap.push(
                    distance(neighbor, end_word), 
                    neighbor, 
                    path + (neighbor,))
        return ()

    def _buckets_for(self, word):
        buckets = []
        for pos in range(len(word)):
            front, back = word[:pos], word[pos+1:]
            buckets.append(front+'*'+back)
        return buckets

    def _neighbors_of(self, word):
        for bucket in self._buckets_for(word):
            for word in self._word_data[bucket]:
                yield word

if __name__ == '__main__':
    import sys
    if len(sys.argv) not in [3, 4]:
        print 'Usage: python one_letter_game.py start_word end_word'
    else:
        matt = OneLetterGame(dict_path = '/usr/share/dict/words')
        matt.run(*sys.argv[1:])

还有,时间比较:

% python /tmp/one_letter_alex.py canoe happy
The shortest path (found in 51.98 sec.) is:
=> canoe -- canon -- caxon -- taxon -- taxor -- taxer -- taper -- paper -- papey -- pappy -- happy

% python /tmp/one_letter_matt.py canoe happy
search time was 0.0020 seconds
('canoe', 'canon', 'caxon', 'taxon', 'taxor', 'taxer', 'taper', 'paper', 'papey', 'pappy', 'happy')
total run time was 0.2416 seconds

【讨论】:

【参考方案2】:

我同意,期望你对这个编程测试的回答是他们选择其他人的唯一原因是很奇怪的,但实际上你的代码存在问题。您在字典中对路径的每一步或每条潜在路径进行线性搜索。对于大型字典和许多潜在路径来说,这可能需要很长时间。同样很明显,您没有彻底测试它,因为没有路径时它会失败。

如果我编写此代码,我会在加载单词时创建一个字典,通过让您直接挑选出下一个单词来消除线性搜索。此代码不是完整的解决方案,但应该说明我的意思:

words = 

def get_keys(word):
    """Generate keys from a word by replacing each letter in turn by an asterisk"""
    for i in range(len(word)):
        yield word[:i]+'*'+word[i+1:]

def get_steps(word):
    """Find the set of all words that can link to the given word."""
    steps = []
    for key in get_keys(word):
        steps.extend(words[key])
    steps = set(steps) - set([word])
    return steps

# Load the dictionary
for word in ('start', 'stare', 'spare', 'spore'):
    for key in get_keys(word):
        if key not in words:
            words[key] = []
        words[key].append(word)

print(words)
print(get_steps('stare'))

【讨论】:

【参考方案3】:

也许你一开始就不想在这样的混蛋公司工作。我个人不相信代码审查。我认为,如果您在检查投资组合和过去的参考资料方面做得足够好,那么在现场代码测试中就不需要这样做了。拥有像这样严​​格政策的公司最终永远不会成功,因为他们所雇用的只是一个 24/7 全天候思考代码的跟踪代码书呆子。只是我的2美分。

【讨论】:

这是一篇讽刺文章吗?老实说,我说不出来。 你为什么觉得它是讽刺的? 因为“单轨代码书呆子”是使项目成功的人......而且主要是访问此类网站的人【参考方案4】:

也许您忘记添加 shebang 了? >-|

或者他们只是不喜欢你的编码风格......例如,我不会为这样一个简单的问题创建一个类,它过度设计了解决方案(尽管我对基础并不那么挑剔当然,招聘决定仅限于此)。

【讨论】:

【参考方案5】:

也许他们期望以编辑距离为估计值的 A* 搜索?

【讨论】:

以上是关于一个字母游戏问题?的主要内容,如果未能解决你的问题,请参考以下文章

字母游戏(搜索)

蓝桥杯-填字母游戏(无偏博弈类问题)

寻求关于使用 DAWG 实现文字游戏的建议

如何在 C++ 中跟踪 Hangman 游戏中猜到的字母?

如何跟踪已经在 C++ 的刽子手游戏中猜到的字母?

猜词游戏:尝试构建人工智能