STM32 禁用和启用由定时器控制的 DMA 和 PWM

Posted

技术标签:

【中文标题】STM32 禁用和启用由定时器控制的 DMA 和 PWM【英文标题】:STM32 Disable and enable DMA and PWM controlled by timer 【发布时间】:2021-07-19 19:39:18 【问题描述】:

我使用的是 STM32F103。我正在尝试动态启用和禁用由定时器控制的 DMA 传输和 PWM 信号。计时器非常不稳定,结果从重新启动变为重新启动。代码运行函数 CAM_startLineTransfer() 应该启用 DMA 传输和 PWM 信号。

void CAM_startLineTransfer(CAM_HandleTypeDef *cam) 
    // init DMA
    while (cam->requestDataTimer->Instance->CNT <=  60) 
    HAL_TIM_PWM_Start(cam->requestDataTimer, cam->requestDataChannel);
    HAL_TIM_OC_Start(cam->DMATimer, cam->DMAChannel);
    __HAL_DMA_DISABLE_IT(cam->hdma, DMA_IT_HT);

    cam->status = RECEIVING;

当 DMA 已传输 640 字节时,应触发中断。

void DMA1_Channel1_IRQHandler(void)

  HAL_DMA_IRQHandler(&hdma_tim2_ch3);
  CAM_stopLineTransfer(&hcam);
  transmitBuffer();

函数 CAM_stopLineTransfer() 应该禁用 DMA 和 PWM 信号,而不是定时器本身。计时器应该一直计时。

void CAM_stopLineTransfer(CAM_HandleTypeDef *cam) 
    // abort DMA
    HAL_TIM_OC_Stop(cam->DMATimer, cam->DMAChannel);
    while (cam->requestDataTimer->Instance->CNT <= 60) 
    HAL_TIM_PWM_Stop(cam->requestDataTimer, cam->requestDataChannel);

    cam->status = WAITING;

但是,定时器很不稳定,有时整个定时器被禁用,有时中断没有被调用。怎么了?到这里,整个主程序就是。

/* Includes ------------------------------------------------------------------*/
#include "main.h"

#include "camera.h"

/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;

TIM_HandleTypeDef htim2;
DMA_HandleTypeDef hdma_tim2_ch3;

UART_HandleTypeDef huart1;

/* USER CODE BEGIN PV */
CAM_HandleTypeDef hcam;
uint8_t cameraData[640] = 10;
Picture pic1;

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_I2C1_Init(void);
static void MX_TIM2_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP */
void CAM_Handle_Init(CAM_HandleTypeDef *cam);
/* USER CODE END PFP */

int main(void)


  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* Configure the system clock */
  SystemClock_Config();

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_I2C1_Init();
  MX_TIM2_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
  CAM_Handle_Init(&hcam);
  CAM_init(&hcam);

  HAL_TIM_OC_Start_DMA(&htim2, TIM_CHANNEL_3, &(GPIOA->IDR), hcam.pic->width);
  CAM_getReg(&hcam, 0x12);
  CAM_getReg(&hcam, 0x1E);
  CAM_getReg(&hcam, 0x13);
  CAM_getReg(&hcam, 0x3F);
  CAM_getReg(&hcam, 0x71);

  for (int i = 0; i < 10; i++) 
      CAM_takePicture(&hcam);
  
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  

    CAM_update(&hcam);

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */

  
  /* USER CODE END 3 */


/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)

  RCC_OscInitTypeDef RCC_OscInitStruct = 0;
  RCC_ClkInitTypeDef RCC_ClkInitStruct = 0;

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  
    Error_Handler();
  
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  
    Error_Handler();
  


/**
  * @brief I2C1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_I2C1_Init(void)


  /* USER CODE BEGIN I2C1_Init 0 */

  /* USER CODE END I2C1_Init 0 */

  /* USER CODE BEGIN I2C1_Init 1 */

  /* USER CODE END I2C1_Init 1 */
  hi2c1.Instance = I2C1;
  hi2c1.Init.ClockSpeed = 100000;
  hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
  hi2c1.Init.OwnAddress1 = 0;
  hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  hi2c1.Init.OwnAddress2 = 0;
  hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  
    Error_Handler();
  
  /* USER CODE BEGIN I2C1_Init 2 */

  /* USER CODE END I2C1_Init 2 */



/**
  * @brief TIM2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM2_Init(void)


  /* USER CODE BEGIN TIM2_Init 0 */

  /* USER CODE END TIM2_Init 0 */

  TIM_MasterConfigTypeDef sMasterConfig = 0;
  TIM_OC_InitTypeDef sConfigOC = 0;

  /* USER CODE BEGIN TIM2_Init 1 */

  /* USER CODE END TIM2_Init 1 */
  htim2.Instance = TIM2;
  htim2.Init.Prescaler = 6-1;
  htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim2.Init.Period = 120 -1;
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
  if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
  
    Error_Handler();
  
  if (HAL_TIM_OC_Init(&htim2) != HAL_OK)
  
    Error_Handler();
  
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  
    Error_Handler();
  
  sConfigOC.OCMode = TIM_OCMODE_PWM2;
  sConfigOC.Pulse = 60;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
  
    Error_Handler();
  
  sConfigOC.OCMode = TIM_OCMODE_TIMING;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  if (HAL_TIM_OC_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
  
    Error_Handler();
  
  /* USER CODE BEGIN TIM2_Init 2 */
  HAL_TIM_OC_MspInit(&htim2);
  HAL_TIM_PWM_MspInit(&htim2);
  /* USER CODE END TIM2_Init 2 */
  HAL_TIM_MspPostInit(&htim2);



/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)


  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  
    Error_Handler();
  
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */



/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)


  /* DMA controller clock enable */
  __HAL_RCC_DMA1_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA1_Channel1_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);



/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)

  GPIO_InitTypeDef GPIO_InitStruct = 0;

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOD_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOC, GPIO_PIN_14, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_4, GPIO_PIN_RESET);

  /*Configure GPIO pin : PC14 */
  GPIO_InitStruct.Pin = GPIO_PIN_14;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

  /*Configure GPIO pins : PB0 PB1 PB10 PB11
                           PB12 PB13 PB14 PB15 */
  GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_10|GPIO_PIN_11
                          |GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  /*Configure GPIO pin : PB4 */
  GPIO_InitStruct.Pin = GPIO_PIN_4;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);



/* USER CODE BEGIN 4 */

void CAM_Handle_Init(CAM_HandleTypeDef *cam) 
    cam->I2C_Address = 0x21;
    cam->destination = cameraData;
    cam->hdma = &hdma_tim2_ch3;
    cam->pic = &pic1;
    cam->requestDataTimer = &htim2;
    cam->requestDataChannel = TIM_CHANNEL_2;
    cam->DMATimer = &htim2;
    cam->DMAChannel = TIM_CHANNEL_3;
    cam->source = &(GPIOA->IDR);
    cam->status = STANDBY;
    cam->I2C_Handler = &hi2c1;

    cam->pic->x = 0;
    cam->pic->y = 0;
    cam->pic->height = 480;
    cam->pic->width = 640;



void transmitBuffer() 
    HAL_UART_Transmit(&huart1, cameraData, 640, HAL_MAX_DELAY);


/* USER CODE END 4 */

【问题讨论】:

【参考方案1】:

我刚刚看到你使用了 DMA_Channel 而不是 Timer_Channel:

HAL_TIM_OC_Start(cam-&gt;DMATimer, cam-&gt;DMAChannel);

【讨论】:

正如目前所写,您的答案尚不清楚。请edit 添加其他详细信息,以帮助其他人了解这如何解决所提出的问题。你可以找到更多关于如何写好答案的信息in the help center。

以上是关于STM32 禁用和启用由定时器控制的 DMA 和 PWM的主要内容,如果未能解决你的问题,请参考以下文章

STM32H7教程第43章 STM32H7的DMA应用之双缓冲控制任意IO和脉冲数控制

使用 stm32 DMA 计算脉​​冲宽度(占空比)。可能吗?

STM32 TIM DAC 和 DMA

重学STM32---DAC+DMA+TIM

stm32_ADC定时器采样(DMA均值处理数据)

STM32F4 UART1 DMA发送和接收不定长度数据