如何从字母矩阵中找到可能的单词列表 [Boggle Solver]
Posted
技术标签:
【中文标题】如何从字母矩阵中找到可能的单词列表 [Boggle Solver]【英文标题】:How to find list of possible words from a letter matrix [Boggle Solver] 【发布时间】:2010-10-19 06:23:46 【问题描述】:最近我在 iPhone 上玩了一款名为 Scramble 的游戏。你们中的一些人可能将这款游戏称为 Boggle。本质上,当游戏开始时,您会得到一个字母矩阵,如下所示:
F X I E
A M L O
E W B X
A S T U
游戏的目标是找到尽可能多的单词,这些单词可以通过将字母链接在一起形成。您可以从任何字母开始,并且围绕它的所有字母都是公平的游戏,然后一旦您继续下一个字母,该字母周围的所有字母都是公平的游戏,除了任何以前使用的字母。所以在上面的网格中,例如,我可以想出LOB
、TUX
、SEA
、FAME
等单词。单词必须至少 3 个字符,并且不超过 NxN 个字符,即在此游戏中为 16,但在某些实现中可能会有所不同。虽然这个游戏很有趣而且很容易上瘾,但我显然不是很擅长,我想通过制作一个可以给我最好的单词的程序来作弊(单词越长,你得到的分数越多)。
(来源:boggled.org)
不幸的是,我不太擅长算法或其效率等。我的第一次尝试使用字典 such as this one (~2.3MB) 并进行线性搜索,尝试将组合与字典条目进行匹配。这需要 非常 很长时间才能找到可能的单词,而且由于每轮只有 2 分钟,这根本不够。
我很想知道是否有任何 ***ers 可以提出更有效的解决方案。我主要在寻找使用 Big 3 Ps 的解决方案:Python、php 和 Perl,尽管使用 Java 或 C++ 的任何东西也很酷,因为速度至关重要。
当前解决方案:
Adam Rosenfield,Python,~20 多岁 John Fouhy,Python,~3s Kent Fredric,Perl,~1s 大流士培根,Python,~1s rvarcher,VB.NET,~1s Paolo Bergantino,PHP (live link),~5s(本地~2s)【问题讨论】:
功能请求 MOAR PUZZLES 关于时间安排:在我的解决方案中,几乎所有时间都花在构建 trie 上。一旦构建了 trie,就可以多次重复使用它。如果只解决一个难题,使用更简单的数据结构(例如一组所有单词和所有前缀)会更有效。 另外,Adam 的字典更大,他的解决方案使用的较长单词的数量证明了这一点。它们都应该根据通用字典进行测试。 我猜没有人玩太多Boggle? “曲”是一个“字母”,我不确定有多少解决方案抓住了这个小细节。看起来其中一些允许您独立使用“u”,以及其他问题。 我最近有这个作为面试问题,并且很好地停留在细节上。我将其视为图形问题,这很好,但这里的解决方案使用的空间要少得多。我现在正在编写自己的解决方案。向所有做出贡献的人致敬! 【参考方案1】:我的答案与此处的其他答案一样有效,但我会发布它,因为它看起来比其他 Python 解决方案更快,因为它可以更快地设置字典。 (我对照 John Fouhy 的解决方案对此进行了检查。)设置后,解决问题的时间减少了。
grid = "fxie amlo ewbx astu".split()
nrows, ncols = len(grid), len(grid[0])
# A dictionary word that could be a solution must use only the grid's
# letters and have length >= 3. (With a case-insensitive match.)
import re
alphabet = ''.join(set(''.join(grid)))
bogglable = re.compile('[' + alphabet + ']3,$', re.I).match
words = set(word.rstrip('\n') for word in open('words') if bogglable(word))
prefixes = set(word[:i] for word in words
for i in range(2, len(word)+1))
def solve():
for y, row in enumerate(grid):
for x, letter in enumerate(row):
for result in extending(letter, ((x, y),)):
yield result
def extending(prefix, path):
if prefix in words:
yield (prefix, path)
for (nx, ny) in neighbors(path[-1]):
if (nx, ny) not in path:
prefix1 = prefix + grid[ny][nx]
if prefix1 in prefixes:
for result in extending(prefix1, path + ((nx, ny),)):
yield result
def neighbors((x, y)):
for nx in range(max(0, x-1), min(x+2, ncols)):
for ny in range(max(0, y-1), min(y+2, nrows)):
yield (nx, ny)
示例用法:
# Print a maximal-length word and its path:
print max(solve(), key=lambda (word, path): len(word))
编辑:过滤掉长度小于 3 个字母的单词。
编辑 2: 我很好奇为什么 Kent Fredric 的 Perl 解决方案更快;结果是使用正则表达式匹配而不是一组字符。在 Python 中执行相同操作会使速度翻倍。
【讨论】:
程序只给我1个字。怎么会? 我不想淹没在输出中。请参阅底部的评论。 或者获取所有没有路径的单词: print ' '.join(sorted(set(word for (word, path) in solve()))) 大部分时间都花在解析字典上。我将其预先解析为一个“wordlines.py”文件,该文件只是一个列表,每个单词都是一个元素。因为它是一个 .py 文件,所以它会变成一个 .pyc 文件。然后我做了一个导入而不是 read().splitlines()。有了这个,在我的盒子上,我可以在十分之一秒左右解决它。 @shellscape,它是 Python 2 代码。 Python 3 放弃了解构参数的能力,比如def neighbors((x, y))
(毫无意义,据我所知)。它还需要在 print
的参数周围加上括号。【参考方案2】:
您将获得的最快解决方案可能是将您的字典存储在trie 中。然后,创建一个三元组队列(x、y、s),其中队列中的每个元素对应一个前缀s可以在网格中拼写的单词的 ,以位置 (x, y) 结尾。使用 N x N 个元素(其中 N 是网格的大小)初始化队列,网格中每个正方形一个元素。然后,算法进行如下:
当队列不为空时: 出列一个三元组 (x, y, s) 对于与 (x, y) 相邻的字母 c 的每个正方形 (x', y'): 如果 s+c 是一个单词,则输出 s+c 如果 s+c 是单词的前缀,则将 (x', y', s+c) 插入到队列中如果您将字典存储在 trie 中,则可以在恒定时间内测试 s+c 是单词还是单词的前缀(前提是您还在每个队列数据中保留一些额外的元数据,例如指向树中当前节点的指针),因此该算法的运行时间是O(可以拼写的单词数)。
[编辑]这是我刚刚编写的 Python 实现:
#!/usr/bin/python
class TrieNode:
def __init__(self, parent, value):
self.parent = parent
self.children = [None] * 26
self.isWord = False
if parent is not None:
parent.children[ord(value) - 97] = self
def MakeTrie(dictfile):
dict = open(dictfile)
root = TrieNode(None, '')
for word in dict:
curNode = root
for letter in word.lower():
if 97 <= ord(letter) < 123:
nextNode = curNode.children[ord(letter) - 97]
if nextNode is None:
nextNode = TrieNode(curNode, letter)
curNode = nextNode
curNode.isWord = True
return root
def BoggleWords(grid, dict):
rows = len(grid)
cols = len(grid[0])
queue = []
words = []
for y in range(cols):
for x in range(rows):
c = grid[y][x]
node = dict.children[ord(c) - 97]
if node is not None:
queue.append((x, y, c, node))
while queue:
x, y, s, node = queue[0]
del queue[0]
for dx, dy in ((1, 0), (1, -1), (0, -1), (-1, -1), (-1, 0), (-1, 1), (0, 1), (1, 1)):
x2, y2 = x + dx, y + dy
if 0 <= x2 < cols and 0 <= y2 < rows:
s2 = s + grid[y2][x2]
node2 = node.children[ord(grid[y2][x2]) - 97]
if node2 is not None:
if node2.isWord:
words.append(s2)
queue.append((x2, y2, s2, node2))
return words
示例用法:
d = MakeTrie('/usr/share/dict/words')
print(BoggleWords(['fxie','amlo','ewbx','astu'], d))
输出:
['fa', 'xi', 'ie', 'io', 'el', 'am', 'ax', 'ae', 'aw', 'mi', 'ma', 'me ', 'lo', 'li', 'oe', 'ox', 'em', 'ea', 'ea', 'es', 'wa', 'we', 'wa', 'bo', 'bu'、'as'、'aw'、'ae'、'st'、'se'、'sa'、'tu'、'ut'、'fam'、'fae'、'imi'、'eli ','榆树','elb','ami','ama','ame','aes','awl','awa','awe','awa','mix','mim', 'mil'、'mam'、'max'、'mae'、'maw'、'mew'、'mem'、'mes'、'lob'、'lox'、'lei'、'leo'、'lie ','lim','oil','olm','ewe','eme','wax','waf','wae','waw','wem','wea','wea', 'was'、'waw'、'wae'、'bob'、'blo'、'bub'、'but'、'ast'、'ase'、'asa'、'awl'、'awa'、'awe ','awa','aes','swa','swa','sew','sea','sea','saw','tux','tub','tut','twa', 'twa'、'tst'、'utu'、'fama'、'名望'、'ixil'、'imam'、'amli'、'amil'、'ambo'、'axil'、'axle'、'mimi ','mima','mime','milo','mile','mewl','mese','mesa','lolo','lobo','lima','lime','limb', 'lile','oime','oleo','olio','oboe','obol','emim','emil','east','ease','wame','wawa','wawa '、'weam'、'west'、'wese'、'wast'、'wa se','wawa','wawa','boil','bolo','bole','bobo','blob','bleo','bubo','asem','stub','stut' , 'swam', 'semi', 'seme', 'seam', 'seax', 'sasa', 'sawt', 'tutu', 'tuts', 'twae', 'twas', 'twae', ' ilima','amble','axile','awest','mamie','mambo','maxim','mease','mesem','limax','limes','limbo','limbu' ,'obole','emesa','embox','awest','swami','famble','mimble','maxima','embolo','embole','wamble','semese',' semble', 'sawbwa', 'sawbwa']
注意:这个程序根本不输出 1 个字母的单词,也不会按字长过滤。这很容易添加,但与问题并不真正相关。如果可以以多种方式拼写,它还会多次输出一些单词。如果一个给定的单词可以用多种不同的方式拼写(最坏的情况:网格中的每个字母都是相同的(例如'A')并且你的字典中有一个像'aaaaaaaaaa'这样的单词),那么运行时间将变成可怕的指数.在算法完成后过滤掉重复项和排序是微不足道的。
【讨论】:
哦。我很高兴有人挺身而出。虽然这可行,但它不会“记住”它已经使用过的字母,并且会提出需要使用相同字母两次的单词,这是不允许的。因为我是个白痴,我将如何解决这个问题? 没错,它不记得访问过哪些字母,但在您的规范中没有指定 =)。要解决此问题,您必须向每个队列数据添加所有访问过的位置的列表,然后在添加下一个字符之前检查该列表。 不,在 BoggleWords() 中。不是存储四元组 (x, y, s, n),而是存储五元组 (x, y, s, n, l),其中 l 是迄今为止访问过的 (x, y) 的列表。然后根据 l 检查每个 (x2, y2) 并仅在它不在 l 中时才接受它。然后将其添加到新的 l 中。 当我厌倦了玩 Scramble 时,我也这样做了。我认为递归(DFS 而不是 BFS)解决方案更有吸引力,因为您可以只保留一组活动单元格(这样您就不会两次访问同一个单元格)。比保留一堆列表要整洁得多。 这不应该陷入死循环吗?我的意思是,对于(x,y)
,可能的追随者是(x+1,y+1)
。然后(x+1,y+1)
被推送到队列中。然而(x,y)
也将成为(x+1,y+1)
的追随者,所以这不会导致他们之间无休止的反弹吗?【参考方案3】:
对于字典加速,您可以执行一种通用转换/过程来提前大大减少字典比较。
鉴于上述网格仅包含 16 个字符,其中一些字符重复,您可以通过简单地过滤掉包含无法获取字符的条目来大大减少字典中的总键数。
我认为这是明显的优化,但看到没有人这样做,我就提一下。
它在输入过程中将我从包含 200,000 个键的字典减少到只有 2,000 个键。这至少减少了内存开销,并且肯定会映射到某个地方的速度增加,因为内存不是无限快的。
Perl 实现
我的实现有点头重脚轻,因为我非常重视能够知道每个提取字符串的确切路径,而不仅仅是其中的有效性。
我也有一些调整,理论上可以允许其中有孔的网格起作用,以及具有不同大小线的网格(假设你输入正确并且它以某种方式排列)。
早期过滤器是迄今为止我的应用程序中最显着的瓶颈,正如之前所怀疑的那样,注释掉该行会使它从 1.5s 膨胀到 7.5s。
在执行时,它似乎认为所有单个数字都是它们自己的有效单词,但我很确定这是由于字典文件的工作方式。
有点臃肿,但至少我重用了 cpan 中的Tree::Trie
其中一些部分受到现有实现的启发,其中一些我已经想到了。
欢迎提出建设性的批评和改进的方法(/me 指出他从来没有 searched CPAN for a boggle solver,但这更有趣)
针对新标准进行了更新
#!/usr/bin/perl
use strict;
use warnings;
# this package manages a given path through the grid.
# Its an array of matrix-nodes in-order with
# Convenience functions for pretty-printing the paths
# and for extending paths as new paths.
# Usage:
# my $p = Prefix->new(path=>[ $startnode ]);
# my $c = $p->child( $extensionNode );
# print $c->current_word ;
package Prefix;
use Moose;
has path => (
isa => 'ArrayRef[MatrixNode]',
is => 'rw',
default => sub [] ,
);
has current_word => (
isa => 'Str',
is => 'rw',
lazy_build => 1,
);
# Create a clone of this object
# with a longer path
# $o->child( $successive-node-on-graph );
sub child
my $self = shift;
my $newNode = shift;
my $f = Prefix->new();
# Have to do this manually or other recorded paths get modified
push @ $f->path , @ $self->path , $newNode;
return $f;
# Traverses $o->path left-to-right to get the string it represents.
sub _build_current_word
my $self = shift;
return join q, map $_->value @ $self->path ;
# Returns the rightmost node on this path
sub tail
my $self = shift;
return $self->path->[-1];
# pretty-format $o->path
sub pp_path
my $self = shift;
my @path =
map '[' . $_->x_position . ',' . $_->y_position . ']'
@ $self->path ;
return "[" . join( ",", @path ) . "]";
# pretty-format $o
sub pp
my $self = shift;
return $self->current_word . ' => ' . $self->pp_path;
__PACKAGE__->meta->make_immutable;
# Basic package for tracking node data
# without having to look on the grid.
# I could have just used an array or a hash, but that got ugly.
# Once the matrix is up and running it doesn't really care so much about rows/columns,
# Its just a sea of points and each point has adjacent points.
# Relative positioning is only really useful to map it back to userspace
package MatrixNode;
use Moose;
has x_position => ( isa => 'Int', is => 'rw', required => 1 );
has y_position => ( isa => 'Int', is => 'rw', required => 1 );
has value => ( isa => 'Str', is => 'rw', required => 1 );
has siblings => (
isa => 'ArrayRef[MatrixNode]',
is => 'rw',
default => sub []
);
# Its not implicitly uni-directional joins. It would be more effient in therory
# to make the link go both ways at the same time, but thats too hard to program around.
# and besides, this isn't slow enough to bother caring about.
sub add_sibling
my $self = shift;
my $sibling = shift;
push @ $self->siblings , $sibling;
# Convenience method to derive a path starting at this node
sub to_path
my $self = shift;
return Prefix->new( path => [$self] );
__PACKAGE__->meta->make_immutable;
package Matrix;
use Moose;
has rows => (
isa => 'ArrayRef',
is => 'rw',
default => sub [] ,
);
has regex => (
isa => 'Regexp',
is => 'rw',
lazy_build => 1,
);
has cells => (
isa => 'ArrayRef',
is => 'rw',
lazy_build => 1,
);
sub add_row
my $self = shift;
push @ $self->rows , [@_];
# Most of these functions from here down are just builder functions,
# or utilities to help build things.
# Some just broken out to make it easier for me to process.
# All thats really useful is add_row
# The rest will generally be computed, stored, and ready to go
# from ->cells by the time either ->cells or ->regex are called.
# traverse all cells and make a regex that covers them.
sub _build_regex
my $self = shift;
my $chars = q;
for my $cell ( @ $self->cells )
$chars .= $cell->value();
$chars = "[^$chars]";
return qr/$chars/i;
# convert a plain cell ( ie: [x][y] = 0 )
# to an intelligent cell ie: [x][y] = object( x, y )
# we only really keep them in this format temporarily
# so we can go through and tie in neighbouring information.
# after the neigbouring is done, the grid should be considered inoperative.
sub _convert
my $self = shift;
my $x = shift;
my $y = shift;
my $v = $self->_read( $x, $y );
my $n = MatrixNode->new(
x_position => $x,
y_position => $y,
value => $v,
);
$self->_write( $x, $y, $n );
return $n;
# go through the rows/collums presently available and freeze them into objects.
sub _build_cells
my $self = shift;
my @out = ();
my @rows = @ $self->rows ;
for my $x ( 0 .. $#rows )
next unless defined $self->rows->[$x];
my @col = @ $self->rows->[$x] ;
for my $y ( 0 .. $#col )
next unless defined $self->rows->[$x]->[$y];
push @out, $self->_convert( $x, $y );
for my $c (@out)
for my $n ( $self->_neighbours( $c->x_position, $c->y_position ) )
$c->add_sibling( $self->rows->[ $n->[0] ]->[ $n->[1] ] );
return \@out;
# given x,y , return array of points that refer to valid neighbours.
sub _neighbours
my $self = shift;
my $x = shift;
my $y = shift;
my @out = ();
for my $sx ( -1, 0, 1 )
next if $sx + $x < 0;
next if not defined $self->rows->[ $sx + $x ];
for my $sy ( -1, 0, 1 )
next if $sx == 0 && $sy == 0;
next if $sy + $y < 0;
next if not defined $self->rows->[ $sx + $x ]->[ $sy + $y ];
push @out, [ $sx + $x, $sy + $y ];
return @out;
sub _has_row
my $self = shift;
my $x = shift;
return defined $self->rows->[$x];
sub _has_cell
my $self = shift;
my $x = shift;
my $y = shift;
return defined $self->rows->[$x]->[$y];
sub _read
my $self = shift;
my $x = shift;
my $y = shift;
return $self->rows->[$x]->[$y];
sub _write
my $self = shift;
my $x = shift;
my $y = shift;
my $v = shift;
$self->rows->[$x]->[$y] = $v;
return $v;
__PACKAGE__->meta->make_immutable;
use Tree::Trie;
sub readDict
my $fn = shift;
my $re = shift;
my $d = Tree::Trie->new();
# Dictionary Loading
open my $fh, '<', $fn;
while ( my $line = <$fh> )
chomp($line);
# Commenting the next line makes it go from 1.5 seconds to 7.5 seconds. EPIC.
next if $line =~ $re; # Early Filter
$d->add( uc($line) );
return $d;
sub traverseGraph
my $d = shift;
my $m = shift;
my $min = shift;
my $max = shift;
my @words = ();
# Inject all grid nodes into the processing queue.
my @queue =
grep $d->lookup( $_->current_word )
map $_->to_path @ $m->cells ;
while (@queue)
my $item = shift @queue;
# put the dictionary into "exact match" mode.
$d->deepsearch('exact');
my $cword = $item->current_word;
my $l = length($cword);
if ( $l >= $min && $d->lookup($cword) )
push @words,
$item; # push current path into "words" if it exactly matches.
next if $l > $max;
# put the dictionary into "is-a-prefix" mode.
$d->deepsearch('boolean');
siblingloop: foreach my $sibling ( @ $item->tail->siblings )
foreach my $visited ( @ $item->path )
next siblingloop if $sibling == $visited;
# given path y , iterate for all its end points
my $subpath = $item->child($sibling);
# create a new path for each end-point
if ( $d->lookup( $subpath->current_word ) )
# if the new path is a prefix, add it to the bottom of the queue.
push @queue, $subpath;
return \@words;
sub setup_predetermined
my $m = shift;
my $gameNo = shift;
if( $gameNo == 0 )
$m->add_row(qw( F X I E ));
$m->add_row(qw( A M L O ));
$m->add_row(qw( E W B X ));
$m->add_row(qw( A S T U ));
return $m;
if( $gameNo == 1 )
$m->add_row(qw( D G H I ));
$m->add_row(qw( K L P S ));
$m->add_row(qw( Y E U T ));
$m->add_row(qw( E O R N ));
return $m;
sub setup_random
my $m = shift;
my $seed = shift;
srand $seed;
my @letters = 'A' .. 'Z' ;
for( 1 .. 4 )
my @r = ();
for( 1 .. 4 )
push @r , $letters[int(rand(25))];
$m->add_row( @r );
# Here is where the real work starts.
my $m = Matrix->new();
setup_predetermined( $m, 0 );
#setup_random( $m, 5 );
my $d = readDict( 'dict.txt', $m->regex );
my $c = scalar @ $m->cells ; # get the max, as per spec
print join ",\n", map $_->pp @
traverseGraph( $d, $m, 3, $c ) ;
;
用于比较的架构/执行信息:
model name : Intel(R) Core(TM)2 Duo CPU T9300 @ 2.50GHz
cache size : 6144 KB
Memory usage summary: heap total: 77057577, heap peak: 11446200, stack peak: 26448
total calls total memory failed calls
malloc| 947212 68763684 0
realloc| 11191 1045641 0 (nomove:9063, dec:4731, free:0)
calloc| 121001 7248252 0
free| 973159 65854762
Histogram for block sizes:
0-15 392633 36% ==================================================
16-31 43530 4% =====
32-47 50048 4% ======
48-63 70701 6% =========
64-79 18831 1% ==
80-95 19271 1% ==
96-111 238398 22% ==============================
112-127 3007 <1%
128-143 236727 21% ==============================
关于正则表达式优化的更多抱怨
我使用的正则表达式优化对于多解词典毫无用处,而对于多解词典,您需要一个完整的词典,而不是预先修剪过的词典。
但是,也就是说,对于一次性解决方案,它确实很快。 (Perl 正则表达式在 C 中!:))
以下是一些不同的代码添加:
sub readDict_nofilter
my $fn = shift;
my $re = shift;
my $d = Tree::Trie->new();
# Dictionary Loading
open my $fh, '<', $fn;
while ( my $line = <$fh> )
chomp($line);
$d->add( uc($line) );
return $d;
sub benchmark_io
use Benchmark qw( cmpthese :hireswallclock );
# generate a random 16 character string
# to simulate there being an input grid.
my $regexen = sub
my @letters = 'A' .. 'Z' ;
my @lo = ();
for( 1..16 )
push @lo , $_ ;
my $c = join '', @lo;
$c = "[^$c]";
return qr/$c/i;
;
cmpthese( 200 ,
filtered => sub
readDict('dict.txt', $regexen->() );
,
unfiltered => sub
readDict_nofilter('dict.txt');
);
s/iter 未过滤 已过滤
未过滤 8.16 -- -94%
过滤 0.464 1658% --
ps:8.16 * 200 = 27 分钟。
【讨论】:
我知道我在优化俱乐部失败了,但在开始真正的代码工作之前我遇到了速度问题,将输入时间从 2 秒减少到 1.2 秒对我来说意义重大。 /me 注意到这很奇怪,现在正则表达式和跳过条目所花费的时间比向哈希添加键所花费的时间要少。 很好,一个 Perl 实现!我现在就去运行它。 Blerg,很难在我的网络服务器上安装 Tree::Trie。 :( 您是如何生成最后一份报告(架构/执行信息)的?看起来很有用。【参考方案4】:你可以把问题分成两部分:
-
某种搜索算法将枚举网格中可能的字符串。
一种测试字符串是否为有效单词的方法。
理想情况下,(2) 还应该包括一种测试字符串是否是有效单词前缀的方法——这将允许您修剪搜索并节省大量时间。
Adam Rosenfield 的 Trie 是 (2) 的解决方案。它很优雅,可能是您的算法专家更喜欢的,但使用现代语言和现代计算机,我们可能会有点懒惰。此外,正如 Kent 所建议的,我们可以通过丢弃网格中不存在字母的单词来减小字典大小。这是一些python:
def make_lookups(grid, fn='dict.txt'):
# Make set of valid characters.
chars = set()
for word in grid:
chars.update(word)
words = set(x.strip() for x in open(fn) if set(x.strip()) <= chars)
prefixes = set()
for w in words:
for i in range(len(w)+1):
prefixes.add(w[:i])
return words, prefixes
哇;恒定时间前缀测试。加载您链接的字典需要几秒钟,但只需要几秒钟:-)(请注意words <= prefixes
)
现在,对于第 (1) 部分,我倾向于用图表来思考。所以我将构建一个看起来像这样的字典:
graph = (x, y):set([(x0,y0), (x1,y1), (x2,y2)]),
即graph[(x, y)]
是您可以从位置(x, y)
到达的一组坐标。我还将添加一个虚拟节点None
,它将连接到所有内容。
构建它有点笨拙,因为有 8 个可能的位置,并且您必须进行边界检查。下面是一些相应笨拙的python代码:
def make_graph(grid):
root = None
graph = root:set()
chardict = root:''
for i, row in enumerate(grid):
for j, char in enumerate(row):
chardict[(i, j)] = char
node = (i, j)
children = set()
graph[node] = children
graph[root].add(node)
add_children(node, children, grid)
return graph, chardict
def add_children(node, children, grid):
x0, y0 = node
for i in [-1,0,1]:
x = x0 + i
if not (0 <= x < len(grid)):
continue
for j in [-1,0,1]:
y = y0 + j
if not (0 <= y < len(grid[0])) or (i == j == 0):
continue
children.add((x,y))
此代码还建立了一个字典映射(x,y)
到相应的字符。这让我可以将职位列表变成一个单词:
def to_word(chardict, pos_list):
return ''.join(chardict[x] for x in pos_list)
最后,我们进行深度优先搜索。基本流程是:
-
搜索到达特定节点。
检查到目前为止的路径是否可以是单词的一部分。如果没有,请不要再探索这个分支。
检查到目前为止的路径是否是一个单词。如果是,请添加到结果列表中。
探索目前不属于路径的所有孩子。
Python:
def find_words(graph, chardict, position, prefix, results, words, prefixes):
""" Arguments:
graph :: mapping (x,y) to set of reachable positions
chardict :: mapping (x,y) to character
position :: current position (x,y) -- equals prefix[-1]
prefix :: list of positions in current string
results :: set of words found
words :: set of valid words in the dictionary
prefixes :: set of valid words or prefixes thereof
"""
word = to_word(chardict, prefix)
if word not in prefixes:
return
if word in words:
results.add(word)
for child in graph[position]:
if child not in prefix:
find_words(graph, chardict, child, prefix+[child], results, words, prefixes)
运行代码为:
grid = ['fxie', 'amlo', 'ewbx', 'astu']
g, c = make_graph(grid)
w, p = make_lookups(grid)
res = set()
find_words(g, c, None, [], res, w, p)
并检查res
以查看答案。这是为您的示例找到的单词列表,按大小排序:
['a', 'b', 'e', 'f', 'i', 'l', 'm', 'o', 's', 't',
'u', 'w', 'x', 'ae', 'am', 'as', 'aw', 'ax', 'bo',
'bu', 'ea', 'el', 'em', 'es', 'fa', 'ie', 'io', 'li',
'lo', 'ma', 'me', 'mi', 'oe', 'ox', 'sa', 'se', 'st',
'tu', 'ut', 'wa', 'we', 'xi', 'aes', 'ame', 'ami',
'ase', 'ast', 'awa', 'awe', 'awl', 'blo', 'but', 'elb',
'elm', 'fae', 'fam', 'lei', 'lie', 'lim', 'lob', 'lox',
'mae', 'maw', 'mew', 'mil', 'mix', 'oil', 'olm', 'saw',
'sea', 'sew', 'swa', 'tub', 'tux', 'twa', 'wae', 'was',
'wax', 'wem', 'ambo', 'amil', 'amli', 'asem', 'axil',
'axle', 'bleo', 'boil', 'bole', 'east', 'fame', 'limb',
'lime', 'mesa', 'mewl', 'mile', 'milo', 'oime', 'sawt',
'seam', 'seax', 'semi', 'stub', 'swam', 'twae', 'twas',
'wame', 'wase', 'wast', 'weam', 'west', 'amble', 'awest',
'axile', 'embox', 'limbo', 'limes', 'swami', 'embole',
'famble', 'semble', 'wamble']
代码需要(字面上)几秒钟来加载字典,但其余部分在我的机器上是即时的。
【讨论】:
非常好!也非常快。我会等着看是否有其他人上台,但到目前为止你的答案看起来不错。 我很困惑为什么“embole”是你唯一的 6 个字母的词,我有 10 个不同的词。看来您禁止两次访问同一节点,正如 OP 所说,这是公平的游戏。 好的,他仍然可能有一个错误,因为他丢弃了不共享字符的“FAMBLE”“WAMBLE”和“SEMBLE”。 好发现!错误在于创建前缀集:我需要使用range(len(w)+1)
而不是range(len(w))
。我声称words <= prefixes
但显然我没有测试:-/
这帮助我了解了 DFS 的工作原理以及如何实现它。除了发表评论之外,不确定有什么方法可以表达对此的赞赏。谢谢!【参考方案5】:
我在 Java 中的尝试。读取文件和构建 trie 大约需要 2 秒,解决难题大约需要 50 毫秒。我使用了问题中链接的字典(它有几个我不知道的英文单词,例如 fae、ima)
0 [main] INFO gineer.bogglesolver.util.Util - Reading the dictionary
2234 [main] INFO gineer.bogglesolver.util.Util - Finish reading the dictionary
2234 [main] INFO gineer.bogglesolver.Solver - Found: FAM
2234 [main] INFO gineer.bogglesolver.Solver - Found: FAME
2234 [main] INFO gineer.bogglesolver.Solver - Found: FAMBLE
2234 [main] INFO gineer.bogglesolver.Solver - Found: FAE
2234 [main] INFO gineer.bogglesolver.Solver - Found: IMA
2234 [main] INFO gineer.bogglesolver.Solver - Found: ELI
2234 [main] INFO gineer.bogglesolver.Solver - Found: ELM
2234 [main] INFO gineer.bogglesolver.Solver - Found: ELB
2234 [main] INFO gineer.bogglesolver.Solver - Found: AXIL
2234 [main] INFO gineer.bogglesolver.Solver - Found: AXILE
2234 [main] INFO gineer.bogglesolver.Solver - Found: AXLE
2234 [main] INFO gineer.bogglesolver.Solver - Found: AMI
2234 [main] INFO gineer.bogglesolver.Solver - Found: AMIL
2234 [main] INFO gineer.bogglesolver.Solver - Found: AMLI
2234 [main] INFO gineer.bogglesolver.Solver - Found: AME
2234 [main] INFO gineer.bogglesolver.Solver - Found: AMBLE
2234 [main] INFO gineer.bogglesolver.Solver - Found: AMBO
2250 [main] INFO gineer.bogglesolver.Solver - Found: AES
2250 [main] INFO gineer.bogglesolver.Solver - Found: AWL
2250 [main] INFO gineer.bogglesolver.Solver - Found: AWE
2250 [main] INFO gineer.bogglesolver.Solver - Found: AWEST
2250 [main] INFO gineer.bogglesolver.Solver - Found: AWA
2250 [main] INFO gineer.bogglesolver.Solver - Found: MIX
2250 [main] INFO gineer.bogglesolver.Solver - Found: MIL
2250 [main] INFO gineer.bogglesolver.Solver - Found: MILE
2250 [main] INFO gineer.bogglesolver.Solver - Found: MILO
2250 [main] INFO gineer.bogglesolver.Solver - Found: MAX
2250 [main] INFO gineer.bogglesolver.Solver - Found: MAE
2250 [main] INFO gineer.bogglesolver.Solver - Found: MAW
2250 [main] INFO gineer.bogglesolver.Solver - Found: MEW
2250 [main] INFO gineer.bogglesolver.Solver - Found: MEWL
2250 [main] INFO gineer.bogglesolver.Solver - Found: MES
2250 [main] INFO gineer.bogglesolver.Solver - Found: MESA
2250 [main] INFO gineer.bogglesolver.Solver - Found: MWA
2250 [main] INFO gineer.bogglesolver.Solver - Found: MWA
2250 [main] INFO gineer.bogglesolver.Solver - Found: LIE
2250 [main] INFO gineer.bogglesolver.Solver - Found: LIM
2250 [main] INFO gineer.bogglesolver.Solver - Found: LIMA
2250 [main] INFO gineer.bogglesolver.Solver - Found: LIMAX
2250 [main] INFO gineer.bogglesolver.Solver - Found: LIME
2250 [main] INFO gineer.bogglesolver.Solver - Found: LIMES
2250 [main] INFO gineer.bogglesolver.Solver - Found: LIMB
2250 [main] INFO gineer.bogglesolver.Solver - Found: LIMBO
2250 [main] INFO gineer.bogglesolver.Solver - Found: LIMBU
2250 [main] INFO gineer.bogglesolver.Solver - Found: LEI
2250 [main] INFO gineer.bogglesolver.Solver - Found: LEO
2250 [main] INFO gineer.bogglesolver.Solver - Found: LOB
2250 [main] INFO gineer.bogglesolver.Solver - Found: LOX
2250 [main] INFO gineer.bogglesolver.Solver - Found: OIME
2250 [main] INFO gineer.bogglesolver.Solver - Found: OIL
2250 [main] INFO gineer.bogglesolver.Solver - Found: OLE
2250 [main] INFO gineer.bogglesolver.Solver - Found: OLM
2250 [main] INFO gineer.bogglesolver.Solver - Found: EMIL
2250 [main] INFO gineer.bogglesolver.Solver - Found: EMBOLE
2250 [main] INFO gineer.bogglesolver.Solver - Found: EMBOX
2250 [main] INFO gineer.bogglesolver.Solver - Found: EAST
2250 [main] INFO gineer.bogglesolver.Solver - Found: WAF
2250 [main] INFO gineer.bogglesolver.Solver - Found: WAX
2250 [main] INFO gineer.bogglesolver.Solver - Found: WAME
2250 [main] INFO gineer.bogglesolver.Solver - Found: WAMBLE
2250 [main] INFO gineer.bogglesolver.Solver - Found: WAE
2250 [main] INFO gineer.bogglesolver.Solver - Found: WEA
2250 [main] INFO gineer.bogglesolver.Solver - Found: WEAM
2250 [main] INFO gineer.bogglesolver.Solver - Found: WEM
2250 [main] INFO gineer.bogglesolver.Solver - Found: WEA
2250 [main] INFO gineer.bogglesolver.Solver - Found: WES
2250 [main] INFO gineer.bogglesolver.Solver - Found: WEST
2250 [main] INFO gineer.bogglesolver.Solver - Found: WAE
2250 [main] INFO gineer.bogglesolver.Solver - Found: WAS
2250 [main] INFO gineer.bogglesolver.Solver - Found: WASE
2250 [main] INFO gineer.bogglesolver.Solver - Found: WAST
2250 [main] INFO gineer.bogglesolver.Solver - Found: BLEO
2250 [main] INFO gineer.bogglesolver.Solver - Found: BLO
2250 [main] INFO gineer.bogglesolver.Solver - Found: BOIL
2250 [main] INFO gineer.bogglesolver.Solver - Found: BOLE
2250 [main] INFO gineer.bogglesolver.Solver - Found: BUT
2250 [main] INFO gineer.bogglesolver.Solver - Found: AES
2250 [main] INFO gineer.bogglesolver.Solver - Found: AWA
2250 [main] INFO gineer.bogglesolver.Solver - Found: AWL
2250 [main] INFO gineer.bogglesolver.Solver - Found: AWE
2250 [main] INFO gineer.bogglesolver.Solver - Found: AWEST
2250 [main] INFO gineer.bogglesolver.Solver - Found: ASE
2250 [main] INFO gineer.bogglesolver.Solver - Found: ASEM
2250 [main] INFO gineer.bogglesolver.Solver - Found: AST
2250 [main] INFO gineer.bogglesolver.Solver - Found: SEA
2250 [main] INFO gineer.bogglesolver.Solver - Found: SEAX
2250 [main] INFO gineer.bogglesolver.Solver - Found: SEAM
2250 [main] INFO gineer.bogglesolver.Solver - Found: SEMI
2250 [main] INFO gineer.bogglesolver.Solver - Found: SEMBLE
2250 [main] INFO gineer.bogglesolver.Solver - Found: SEW
2250 [main] INFO gineer.bogglesolver.Solver - Found: SEA
2250 [main] INFO gineer.bogglesolver.Solver - Found: SWA
2250 [main] INFO gineer.bogglesolver.Solver - Found: SWAM
2250 [main] INFO gineer.bogglesolver.Solver - Found: SWAMI
2250 [main] INFO gineer.bogglesolver.Solver - Found: SWA
2250 [main] INFO gineer.bogglesolver.Solver - Found: SAW
2250 [main] INFO gineer.bogglesolver.Solver - Found: SAWT
2250 [main] INFO gineer.bogglesolver.Solver - Found: STU
2250 [main] INFO gineer.bogglesolver.Solver - Found: STUB
2250 [main] INFO gineer.bogglesolver.Solver - Found: TWA
2250 [main] INFO gineer.bogglesolver.Solver - Found: TWAE
2250 [main] INFO gineer.bogglesolver.Solver - Found: TWA
2250 [main] INFO gineer.bogglesolver.Solver - Found: TWAE
2250 [main] INFO gineer.bogglesolver.Solver - Found: TWAS
2250 [main] INFO gineer.bogglesolver.Solver - Found: TUB
2250 [main] INFO gineer.bogglesolver.Solver - Found: TUX
源代码由 6 个类组成。我会在下面发布它们(如果这不是 *** 上的正确做法,请告诉我)。
gineer.bogglesolver.Main
package gineer.bogglesolver;
import org.apache.log4j.BasicConfigurator;
import org.apache.log4j.Logger;
public class Main
private final static Logger logger = Logger.getLogger(Main.class);
public static void main(String[] args)
BasicConfigurator.configure();
Solver solver = new Solver(4,
"FXIE" +
"AMLO" +
"EWBX" +
"ASTU");
solver.solve();
gineer.bogglesolver.Solver
package gineer.bogglesolver;
import gineer.bogglesolver.trie.Trie;
import gineer.bogglesolver.util.Constants;
import gineer.bogglesolver.util.Util;
import org.apache.log4j.Logger;
public class Solver
private char[] puzzle;
private int maxSize;
private boolean[] used;
private StringBuilder stringSoFar;
private boolean[][] matrix;
private Trie trie;
private final static Logger logger = Logger.getLogger(Solver.class);
public Solver(int size, String puzzle)
trie = Util.getTrie(size);
matrix = Util.connectivityMatrix(size);
maxSize = size * size;
stringSoFar = new StringBuilder(maxSize);
used = new boolean[maxSize];
if (puzzle.length() == maxSize)
this.puzzle = puzzle.toCharArray();
else
logger.error("The puzzle size does not match the size specified: " + puzzle.length());
this.puzzle = puzzle.substring(0, maxSize).toCharArray();
public void solve()
for (int i = 0; i < maxSize; i++)
traverseAt(i);
private void traverseAt(int origin)
stringSoFar.append(puzzle[origin]);
used[origin] = true;
//Check if we have a valid word
if ((stringSoFar.length() >= Constants.MINIMUM_WORD_LENGTH) && (trie.containKey(stringSoFar.toString())))
logger.info("Found: " + stringSoFar.toString());
//Find where to go next
for (int destination = 0; destination < maxSize; destination++)
if (matrix[origin][destination] && !used[destination] && trie.containPrefix(stringSoFar.toString() + puzzle[destination]))
traverseAt(destination);
used[origin] = false;
stringSoFar.deleteCharAt(stringSoFar.length() - 1);
gineer.bogglesolver.trie.Node
package gineer.bogglesolver.trie;
import gineer.bogglesolver.util.Constants;
class Node
Node[] children;
boolean isKey;
public Node()
isKey = false;
children = new Node[Constants.NUMBER_LETTERS_IN_ALPHABET];
public Node(boolean key)
isKey = key;
children = new Node[Constants.NUMBER_LETTERS_IN_ALPHABET];
/**
Method to insert a string to Node and its children
@param key the string to insert (the string is assumed to be uppercase)
@return true if the node or one of its children is changed, false otherwise
*/
public boolean insert(String key)
//If the key is empty, this node is a key
if (key.length() == 0)
if (isKey)
return false;
else
isKey = true;
return true;
else
//otherwise, insert in one of its child
int childNodePosition = key.charAt(0) - Constants.LETTER_A;
if (children[childNodePosition] == null)
children[childNodePosition] = new Node();
children[childNodePosition].insert(key.substring(1));
return true;
else
return children[childNodePosition].insert(key.substring(1));
/**
Returns whether key is a valid prefix for certain key in this trie.
For example: if key "hello" is in this trie, tests with all prefixes "hel", "hell", "hello" return true
@param prefix the prefix to check
@return true if the prefix is valid, false otherwise
*/
public boolean containPrefix(String prefix)
//If the prefix is empty, return true
if (prefix.length() == 0)
return true;
else
//otherwise, check in one of its child
int childNodePosition = prefix.charAt(0) - Constants.LETTER_A;
return children[childNodePosition] != null && children[childNodePosition].containPrefix(prefix.substring(1));
/**
Returns whether key is a valid key in this trie.
For example: if key "hello" is in this trie, tests with all prefixes "hel", "hell" return false
@param key the key to check
@return true if the key is valid, false otherwise
*/
public boolean containKey(String key)
//If the prefix is empty, return true
if (key.length() == 0)
return isKey;
else
//otherwise, check in one of its child
int childNodePosition = key.charAt(0) - Constants.LETTER_A;
return children[childNodePosition] != null && children[childNodePosition].containKey(key.substring(1));
public boolean isKey()
return isKey;
public void setKey(boolean key)
isKey = key;
gineer.bogglesolver.trie.Trie
package gineer.bogglesolver.trie;
public class Trie
Node root;
public Trie()
this.root = new Node();
/**
Method to insert a string to Node and its children
@param key the string to insert (the string is assumed to be uppercase)
@return true if the node or one of its children is changed, false otherwise
*/
public boolean insert(String key)
return root.insert(key.toUpperCase());
/**
Returns whether key is a valid prefix for certain key in this trie.
For example: if key "hello" is in this trie, tests with all prefixes "hel", "hell", "hello" return true
@param prefix the prefix to check
@return true if the prefix is valid, false otherwise
*/
public boolean containPrefix(String prefix)
return root.containPrefix(prefix.toUpperCase());
/**
Returns whether key is a valid key in this trie.
For example: if key "hello" is in this trie, tests with all prefixes "hel", "hell" return false
@param key the key to check
@return true if the key is valid, false otherwise
*/
public boolean containKey(String key)
return root.containKey(key.toUpperCase());
gineer.bogglesolver.util.Constants
package gineer.bogglesolver.util;
public class Constants
public static final int NUMBER_LETTERS_IN_ALPHABET = 26;
public static final char LETTER_A = 'A';
public static final int MINIMUM_WORD_LENGTH = 3;
public static final int DEFAULT_PUZZLE_SIZE = 4;
gineer.bogglesolver.util.Util
package gineer.bogglesolver.util;
import gineer.bogglesolver.trie.Trie;
import org.apache.log4j.Logger;
import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;
public class Util
private final static Logger logger = Logger.getLogger(Util.class);
private static Trie trie;
private static int size = Constants.DEFAULT_PUZZLE_SIZE;
/**
Returns the trie built from the dictionary. The size is used to eliminate words that are too long.
@param size the size of puzzle. The maximum lenght of words in the returned trie is (size * size)
@return the trie that can be used for puzzle of that size
*/
public static Trie getTrie(int size)
if ((trie != null) && size == Util.size)
return trie;
trie = new Trie();
Util.size = size;
logger.info("Reading the dictionary");
final File file = new File("dictionary.txt");
try
Scanner scanner = new Scanner(file);
final int maxSize = size * size;
while (scanner.hasNext())
String line = scanner.nextLine().replaceAll("[^\\pAlpha]", "");
if (line.length() <= maxSize)
trie.insert(line);
catch (FileNotFoundException e)
logger.error("Cannot open file", e);
logger.info("Finish reading the dictionary");
return trie;
static boolean[] connectivityRow(int x, int y, int size)
boolean[] squares = new boolean[size * size];
for (int offsetX = -1; offsetX <= 1; offsetX++)
for (int offsetY = -1; offsetY <= 1; offsetY++)
final int calX = x + offsetX;
final int calY = y + offsetY;
if ((calX >= 0) && (calX < size) && (calY >= 0) && (calY < size))
squares[calY * size + calX] = true;
squares[y * size + x] = false;//the current x, y is false
return squares;
/**
Returns the matrix of connectivity between two points. Point i can go to point j iff matrix[i][j] is true
Square (x, y) is equivalent to point (size * y + x). For example, square (1,1) is point 5 in a puzzle of size 4
@param size the size of the puzzle
@return the connectivity matrix
*/
public static boolean[][] connectivityMatrix(int size)
boolean[][] matrix = new boolean[size * size][];
for (int x = 0; x < size; x++)
for (int y = 0; y < size; y++)
matrix[y * size + x] = connectivityRow(x, y, size);
return matrix;
【讨论】:
我正在将我的输出与其他 ***ers 的输出进行比较,似乎 Adam、John 和 rvarcher 的输出缺少一些单词。例如,“Mwa”在字典中(是的!),但它不会在 Adam、John 和 rvarcher 的输出中返回。它在 Paolo 的 PHP 链接中返回两次。 我通过复制粘贴尝试了这个。它说“正在阅读...”和“完成阅读...”,但之后什么也没有出现。未显示任何匹配项。【参考方案6】:我认为您可能会花费大部分时间来尝试匹配您的字母网格不可能构建的单词。所以,我要做的第一件事就是尝试加快这一步,这应该可以让你大部分时间到达那里。
为此,我会将网格重新表示为一个可能的“移动”表,您可以通过您正在查看的字母转换对其进行索引。
首先从整个字母表中为每个字母分配一个数字(A=0、B=1、C=2……等等)。
我们来看这个例子:
h b c d
e e g h
l l k l
m o f p
现在,让我们使用我们拥有的字母的字母表(通常您可能希望每次都使用相同的整个字母表):
b | c | d | e | f | g | h | k | l | m | o | p
---+---+---+---+---+---+---+---+---+---+----+----
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11
然后你创建一个 2D 布尔数组,告诉你是否有特定的字母转换可用:
| 0 1 2 3 4 5 6 7 8 9 10 11 <- from letter
| b c d e f g h k l m o p
-----+--------------------------------------
0 b | T T T T
1 c | T T T T T
2 d | T T T
3 e | T T T T T T T
4 f | T T T T
5 g | T T T T T T T
6 h | T T T T T T T
7 k | T T T T T T T
8 l | T T T T T T T T T
9 m | T T
10 o | T T T T
11 p | T T T
^
to letter
现在浏览您的单词列表并将单词转换为过渡:
hello (6, 3, 8, 8, 10):
6 -> 3, 3 -> 8, 8 -> 8, 8 -> 10
然后通过在您的表格中查找这些转换来检查它们是否允许:
[6][ 3] : T
[3][ 8] : T
[8][ 8] : T
[8][10] : T
如果都允许的话,就有可能找到这个词。
例如,单词“helmet”可以在第 4 次转换(m 到 e:helMEt)时被排除,因为您表中的该条目是错误的。
并且可以排除仓鼠这个词,因为不允许第一个(h 到 a)转换(甚至在您的表中不存在)。
现在,对于您没有消除的可能非常少的剩余单词,请尝试按照您现在的方式或按照此处其他一些答案中的建议在网格中实际找到它们。这是为了避免由于网格中相同字母之间的跳跃而导致的误报。例如,表格允许使用“帮助”一词,但网格不允许使用。
关于这个想法的一些进一步的性能改进提示:
不要使用二维数组,而是使用一维数组并简单地自己计算第二个字母的索引。因此,不要像上面那样创建一个 12x12 数组,而是创建一个长度为 144 的一维数组。如果您总是使用相同的字母表(即标准英文字母表的 26x26 = 676x1 数组),即使不是所有字母都显示在您的网格中,您可以将索引预先计算到这个一维数组中,您需要对其进行测试以匹配您的字典单词。例如,上面示例中“hello”的索引将是
hello (6, 3, 8, 8, 10):
42 (from 6 + 3x12), 99, 104, 128
-> "hello" will be stored as 42, 99, 104, 128 in the dictionary
将想法扩展到 3D 表格(表示为 1D 数组),即所有允许的 3 字母组合。这样,您可以立即消除更多单词,并将每个单词的数组查找次数减少 1:对于“hello”,您只需要 3 个数组查找:hel、ell、llo。顺便说一句,构建这张表会非常快,因为您的网格中只有 400 个可能的 3 字母移动。
预先计算您需要包含在表格中的网格中移动的索引。对于上面的示例,您需要将以下条目设置为“True”:
(0,0) (0,1) -> here: h, b : [6][0]
(0,0) (1,0) -> here: h, e : [6][3]
(0,0) (1,1) -> here: h, e : [6][3]
(0,1) (0,0) -> here: b, h : [0][6]
(0,1) (0,2) -> here: b, c : [0][1]
.
:
还可以在具有 16 个条目的一维数组中表示您的游戏网格,并在 3 中预先计算表格。包含该数组的索引。
我敢肯定,如果您使用这种方法,如果您已预先计算字典并已将其加载到内存中,您的代码可以异常快速地运行。
顺便说一句:如果您正在构建游戏,另一件好事就是立即在后台运行这些东西。开始生成和解决第一个游戏,同时用户仍在查看您应用程序上的标题屏幕并让他的手指到位按“播放”。然后在用户玩上一个游戏时生成并解决下一个游戏。这应该会给你很多时间来运行你的代码。
(我喜欢这个问题,所以我可能会想在接下来几天的某个时间用 Java 实现我的提议,看看它会如何实际执行......一旦我这样做了,我会在这里发布代码。)
更新:
好的,我今天有时间用Java实现了这个想法:
class DictionaryEntry
public int[] letters;
public int[] triplets;
class BoggleSolver
// Constants
final int ALPHABET_SIZE = 5; // up to 2^5 = 32 letters
final int BOARD_SIZE = 4; // 4x4 board
final int[] moves = -BOARD_SIZE-1, -BOARD_SIZE, -BOARD_SIZE+1,
-1, +1,
+BOARD_SIZE-1, +BOARD_SIZE, +BOARD_SIZE+1;
// Technically constant (calculated here for flexibility, but should be fixed)
DictionaryEntry[] dictionary; // Processed word list
int maxWordLength = 0;
int[] boardTripletIndices; // List of all 3-letter moves in board coordinates
DictionaryEntry[] buildDictionary(String fileName) throws IOException
BufferedReader fileReader = new BufferedReader(new FileReader(fileName));
String word = fileReader.readLine();
ArrayList<DictionaryEntry> result = new ArrayList<DictionaryEntry>();
while (word!=null)
if (word.length()>=3)
word = word.toUpperCase();
if (word.length()>maxWordLength) maxWordLength = word.length();
DictionaryEntry entry = new DictionaryEntry();
entry.letters = new int[word.length() ];
entry.triplets = new int[word.length()-2];
int i=0;
for (char letter: word.toCharArray())
entry.letters[i] = (byte) letter - 65; // Convert ASCII to 0..25
if (i>=2)
entry.triplets[i-2] = (((entry.letters[i-2] << ALPHABET_SIZE) +
entry.letters[i-1]) << ALPHABET_SIZE) +
entry.letters[i];
i++;
result.add(entry);
word = fileReader.readLine();
return result.toArray(new DictionaryEntry[result.size()]);
boolean isWrap(int a, int b) // Checks if move a->b wraps board edge (like 3->4)
return Math.abs(a%BOARD_SIZE-b%BOARD_SIZE)>1;
int[] buildTripletIndices()
ArrayList<Integer> result = new ArrayList<Integer>();
for (int a=0; a<BOARD_SIZE*BOARD_SIZE; a++)
for (int bm: moves)
int b=a+bm;
if ((b>=0) && (b<board.length) && !isWrap(a, b))
for (int cm: moves)
int c=b+cm;
if ((c>=0) && (c<board.length) && (c!=a) && !isWrap(b, c))
result.add(a);
result.add(b);
result.add(c);
int[] result2 = new int[result.size()];
int i=0;
for (Integer r: result) result2[i++] = r;
return result2;
// Variables that depend on the actual game layout
int[] board = new int[BOARD_SIZE*BOARD_SIZE]; // Letters in board
boolean[] possibleTriplets = new boolean[1 << (ALPHABET_SIZE*3)];
DictionaryEntry[] candidateWords;
int candidateCount;
int[] usedBoardPositions;
DictionaryEntry[] foundWords;
int foundCount;
void initializeBoard(String[] letters)
for (int row=0; row<BOARD_SIZE; row++)
for (int col=0; col<BOARD_SIZE; col++)
board[row*BOARD_SIZE + col] = (byte) letters[row].charAt(col) - 65;
void setPossibleTriplets()
Arrays.fill(possibleTriplets, false); // Reset list
int i=0;
while (i<boardTripletIndices.length)
int triplet = (((board[boardTripletIndices[i++]] << ALPHABET_SIZE) +
board[boardTripletIndices[i++]]) << ALPHABET_SIZE) +
board[boardTripletIndices[i++]];
possibleTriplets[triplet] = true;
void checkWordTriplets()
candidateCount = 0;
for (DictionaryEntry entry: dictionary)
boolean ok = true;
int len = entry.triplets.length;
for (int t=0; (t<len) && ok; t++)
ok = possibleTriplets[entry.triplets[t]];
if (ok) candidateWords[candidateCount++] = entry;
void checkWords() // Can probably be optimized a lot
foundCount = 0;
for (int i=0; i<candidateCount; i++)
DictionaryEntry candidate = candidateWords[i];
for (int j=0; j<board.length; j++)
if (board[j]==candidate.letters[0])
usedBoardPositions[0] = j;
if (checkNextLetters(candidate, 1, j))
foundWords[foundCount++] = candidate;
break;
boolean checkNextLetters(DictionaryEntry candidate, int letter, int pos)
if (letter==candidate.letters.length) return true;
int match = candidate.letters[letter];
for (int move: moves)
int next=pos+move;
if ((next>=0) && (next<board.length) && (board[next]==match) && !isWrap(pos, next))
boolean ok = true;
for (int i=0; (i<letter) && ok; i++)
ok = usedBoardPositions[i]!=next;
if (ok)
usedBoardPositions[letter] = next;
if (checkNextLetters(candidate, letter+1, next)) return true;
return false;
// Just some helper functions
String formatTime(long start, long end, long repetitions)
long time = (end-start)/repetitions;
return time/1000000 + "." + (time/100000) % 10 + "" + (time/10000) % 10 + "ms";
String getWord(DictionaryEntry entry)
char[] result = new char[entry.letters.length];
int i=0;
for (int letter: entry.letters)
result[i++] = (char) (letter+97);
return new String(result);
void run() throws IOException
long start = System.nanoTime();
// The following can be pre-computed and should be replaced by constants
dictionary = buildDictionary("C:/TWL06.txt");
boardTripletIndices = buildTripletIndices();
long precomputed = System.nanoTime();
// The following only needs to run once at the beginning of the program
candidateWords = new DictionaryEntry[dictionary.length]; // WAAAY too generous
foundWords = new DictionaryEntry[dictionary.length]; // WAAAY too generous
usedBoardPositions = new int[maxWordLength];
long initialized = System.nanoTime();
for (int n=1; n<=100; n++)
// The following needs to run again for every new board
initializeBoard(new String[] "DGHI",
"KLPS",
"YEUT",
"EORN");
setPossibleTriplets();
checkWordTriplets();
checkWords();
long solved = System.nanoTime();
// Print out result and statistics
System.out.println("Precomputation finished in " + formatTime(start, precomputed, 1)+":");
System.out.println(" Words in the dictionary: "+dictionary.length);
System.out.println(" Longest word: "+maxWordLength+" letters");
System.out.println(" Number of triplet-moves: "+boardTripletIndices.length/3);
System.out.println();
System.out.println("Initialization finished in " + formatTime(precomputed, initialized, 1));
System.out.println();
System.out.println("Board solved in "+formatTime(initialized, solved, 100)+":");
System.out.println(" Number of candidates: "+candidateCount);
System.out.println(" Number of actual words: "+foundCount);
System.out.println();
System.out.println("Words found:");
int w=0;
System.out.print(" ");
for (int i=0; i<foundCount; i++)
System.out.print(getWord(foundWords[i]));
w++;
if (w==10)
w=0;
System.out.println(); System.out.print(" ");
else
if (i<foundCount-1) System.out.print(", ");
System.out.println();
public static void main(String[] args) throws IOException
new BoggleSolver().run();
以下是一些结果:
对于原始问题中发布的图片中的网格(DGHI ...):
Precomputation finished in 239.59ms:
Words in the dictionary: 178590
Longest word: 15 letters
Number of triplet-moves: 408
Initialization finished in 0.22ms
Board solved in 3.70ms:
Number of candidates: 230
Number of actual words: 163
Words found:
eek, eel, eely, eld, elhi, elk, ern, erupt, erupts, euro
eye, eyer, ghi, ghis, glee, gley, glue, gluer, gluey, glut
gluts, hip, hiply, hips, his, hist, kelp, kelps, kep, kepi
kepis, keps, kept, kern, key, kye, lee, lek, lept, leu
ley, lunt, lunts, lure, lush, lust, lustre, lye, nus, nut
nuts, ore, ort, orts, ouph, ouphs, our, oust, out, outre
outs, oyer, pee, per, pert, phi, phis, pis, pish, plus
plush, ply, plyer, psi, pst, pul, pule, puler, pun, punt
punts, pur, pure, puree, purely, pus, push, put, puts, ree
rely, rep, reply, reps, roe, roue, roup, roups, roust, rout
routs, rue, rule, ruly, run, runt, runts, rupee, rush, rust
rut, ruts, ship, shlep, sip, sipe, spue, spun, spur, spurn
spurt, strep, stroy, stun, stupe, sue, suer, sulk, sulker, sulky
sun, sup, supe, super, sure, surely, tree, trek, trey, troupe
troy, true, truly, tule, tun, tup, tups, turn, tush, ups
urn, uts, yeld, yelk, yelp, yelps, yep, yeps, yore, you
your, yourn, yous
对于在原始问题中作为示例发布的字母(FXIE...)
Precomputation finished in 239.68ms:
Words in the dictionary: 178590
Longest word: 15 letters
Number of triplet-moves: 408
Initialization finished in 0.21ms
Board solved in 3.69ms:
Number of candidates: 87
Number of actual words: 76
Words found:
amble, ambo, ami, amie, asea, awa, awe, awes, awl, axil
axile, axle, boil, bole, box, but, buts, east, elm, emboli
fame, fames, fax, lei, lie, lima, limb, limbo, limbs, lime
limes, lob, lobs, lox, mae, maes, maw, maws, max, maxi
mesa, mew, mewl, mews, mil, mile, milo, mix, oil, ole
sae, saw, sea, seam, semi, sew, stub, swam, swami, tub
tubs, tux, twa, twae, twaes, twas, uts, wae, waes, wamble
wame, wames, was, wast, wax, west
对于以下 5x5 网格:
R P R I T
A H H L N
I E T E P
Z R Y S G
O G W E Y
它给出了这个:
Precomputation finished in 240.39ms:
Words in the dictionary: 178590
Longest word: 15 letters
Number of triplet-moves: 768
Initialization finished in 0.23ms
Board solved in 3.85ms:
Number of candidates: 331
Number of actual words: 240
Words found:
aero, aery, ahi, air, airt, airth, airts, airy, ear, egest
elhi, elint, erg, ergo, ester, eth, ether, eye, eyen, eyer
eyes, eyre, eyrie, gel, gelt, gelts, gen, gent, gentil, gest
geste, get, gets, gey, gor, gore, gory, grey, greyest, greys
gyre, gyri, gyro, hae, haet, haets, hair, hairy, hap, harp
heap, hear, heh, heir, help, helps, hen, hent, hep, her
hero, hes, hest, het, hetero, heth, hets, hey, hie, hilt
hilts, hin, hint, hire, hit, inlet, inlets, ire, leg, leges
legs, lehr, lent, les, lest, let, lethe, lets, ley, leys
lin, line, lines, liney, lint, lit, neg, negs, nest, nester
net, nether, nets, nil, nit, ogre, ore, orgy, ort, orts
pah, pair, par, peg, pegs, peh, pelt, pelter, peltry, pelts
pen, pent, pes, pest, pester, pesty, pet, peter, pets, phi
philter, philtre, phiz, pht, print, pst, rah, rai, rap, raphe
raphes, reap, rear, rei, ret, rete, rets, rhaphe, rhaphes, rhea
ria, rile, riles, riley, rin, rye, ryes, seg, sel, sen
sent, senti, set, sew, spelt, spelter, spent, splent, spline, splint
split, stent, step, stey, stria, striae, sty, stye, tea, tear
teg, tegs, tel, ten, tent, thae, the, their, then, these
thesp, they, thin, thine, thir, thirl, til, tile, tiles, tilt
tilter, tilth, tilts, tin, tine, tines, tirl, trey, treys, trog
try, tye, tyer, tyes, tyre, tyro, west, wester, wry, wryest
wye, wyes, wyte, wytes, yea, yeah, year, yeh, yelp, yelps
yen, yep, yeps, yes, yester, yet, yew, yews, zero, zori
为此,我使用了TWL06 Tournament Scrabble Word List,因为原始问题中的链接不再有效。这个文件是 1.85MB,所以它有点短。而buildDictionary
函数会抛出所有少于 3 个字母的单词。
以下是关于此性能的一些观察:
它比 Victor Nicollet 的 OCaml 实现报告的性能慢了大约 10 倍。无论这是由不同的算法、他使用的较短的字典、他的代码是在 Java 虚拟机中编译和我的运行,还是我们计算机的性能(我的是运行 WinXP 的 Intel Q6600 @ 2.4MHz)造成的,我不知道。但它比原始问题末尾引用的其他实现的结果要快得多。所以,这个算法是否优于trie字典,我目前不知道。
checkWordTriplets()
中使用的表格方法可以很好地近似实际答案。它通过的 3-5 个单词中只有 1 个会通过 checkWords()
测试(参见上面的候选字数与实际字数)。
上面看不到的东西:checkWordTriplets()
函数大约需要 3.65 毫秒,因此在搜索过程中占主导地位。 checkWords()
函数几乎占用了剩余的 0.05-0.20 毫秒。
checkWordTriplets()
函数的执行时间与字典大小成线性关系,并且几乎与板子大小无关!
checkWords()
的执行时间取决于板子大小和checkWordTriplets()
不排除的字数。
上面的checkWords()
实现是我想出的最愚蠢的第一个版本。它基本上根本没有优化。但与checkWordTriplets()
相比,它与应用程序的整体性能无关,所以我并不担心。 但是,如果板子尺寸变大,这个功能会越来越慢,最终会变得很重要。然后,它也需要优化。
这段代码的一个优点是它的灵活性:
您可以轻松更改电路板大小:更新第 10 行并将字符串数组传递给initializeBoard()
。
它可以支持更大/不同的字母,并且可以处理诸如将“Qu”视为一个字母这样的事情,而不会产生任何性能开销。为此,需要更新第 9 行以及将字符转换为数字的几个地方(目前只需从 ASCII 值中减去 65)
好的,但我认为现在这篇文章已经够长了。我绝对可以回答您可能有的任何问题,但让我们将其移至 cmets。
【讨论】:
不错的答案。我想看看你在 Java 中的实现。 @MikkoP 完成! :) 花了大约 3 个小时和 220 行代码。度过一个下午的好方法。如果您对它的工作原理有任何疑问,请告诉我... :) 感谢您发布代码!添加缺失的导入后,我用自己的字典进行了尝试。我在ok = possibleTriplets[entry.triplets[t]];
线上得到了一个ArrayIndexOutOfBoundException。嗯?
@MikkoP 目前编写此代码是为了假设字典仅包含大写字母 A-Z。关键在第 34 行:entry.letters[i] = (byte) letter - 65;
它只取 ASCII 值并减去 65(“A”)。如果您的字典中有元音变音或小写字母,这将给出大于 31 的值,这不是第 9 行中的字母大小设置所计划的。要支持其他字母,您必须扩展此行将它们映射到字母大小允许的范围内。
@AlexanderN 您可能正确理解了逻辑。我在复制字母网格时出错了...抱歉...(已修复)【参考方案7】:
令人惊讶的是,没有人尝试过这个的 PHP 版本。
这是 John Fouhy 的 Python 解决方案的 PHP 版本。
虽然我从其他人的答案中得到了一些指导,但这主要是从约翰那里复制的。
$boggle = "fxie
amlo
ewbx
astu";
$alphabet = str_split(str_replace(array("\n", " ", "\r"), "", strtolower($boggle)));
$rows = array_map('trim', explode("\n", $boggle));
$dictionary = file("C:/dict.txt");
$prefixes = array(''=>'');
$words = array();
$regex = '/[' . implode('', $alphabet) . ']3,$/S';
foreach($dictionary as $k=>$value)
$value = trim(strtolower($value));
$length = strlen($value);
if(preg_match($regex, $value))
for($x = 0; $x < $length; $x++)
$letter = substr($value, 0, $x+1);
if($letter == $value)
$words[$value] = 1;
else
$prefixes[$letter] = 1;
$graph = array();
$chardict = array();
$positions = array();
$c = count($rows);
for($i = 0; $i < $c; $i++)
$l = strlen($rows[$i]);
for($j = 0; $j < $l; $j++)
$chardict[$i.','.$j] = $rows[$i][$j];
$children = array();
$pos = array(-1,0,1);
foreach($pos as $z)
$xCoord = $z + $i;
if($xCoord < 0 || $xCoord >= count($rows))
continue;
$len = strlen($rows[0]);
foreach($pos as $w)
$yCoord = $j + $w;
if(($yCoord < 0 || $yCoord >= $len) || ($z == 0 && $w == 0))
continue;
$children[] = array($xCoord, $yCoord);
$graph['None'][] = array($i, $j);
$graph[$i.','.$j] = $children;
function to_word($chardict, $prefix)
$word = array();
foreach($prefix as $v)
$word[] = $chardict[$v[0].','.$v[1]];
return implode("", $word);
function find_words($graph, $chardict, $position, $prefix, $prefixes, &$results, $words)
$word = to_word($chardict, $prefix);
if(!isset($prefixes[$word])) return false;
if(isset($words[$word]))
$results[] = $word;
foreach($graph[$position] as $child)
if(!in_array($child, $prefix))
$newprefix = $prefix;
$newprefix[] = $child;
find_words($graph, $chardict, $child[0].','.$child[1], $newprefix, $prefixes, $results, $words);
$solution = array();
find_words($graph, $chardict, 'None', array(), $prefixes, $solution);
print_r($solution);
如果您想尝试一下,这里是live link。虽然在我的本地机器上大约需要 2 秒,但在我的网络服务器上需要大约 5 秒。无论哪种情况,它都不是很快。尽管如此,它仍然非常可怕,所以我可以想象时间可以大大减少。任何有关如何实现这一目标的指示将不胜感激。 PHP 缺少元组使坐标难以使用,而我无法理解到底发生了什么也没有任何帮助。
编辑:一些修复使其在本地花费不到 1 秒。
【讨论】:
+1 @ “我无法理解到底发生了什么,这根本没有帮助。”哈哈。我爱诚实! 我不懂 PHP,但我会尝试的第一件事是提升 '/[' 。内爆('',$字母)。 ']3,$/' 退出循环。也就是说,为此设置一个变量并在循环内使用该变量。 我很确定 PHP 会保留已编译正则表达式的每线程全局缓存,但无论如何我都会尝试。 @Daniel:显然这是我的网络服务器。当我在本地运行时不会发生这种情况。耸耸肩。真的不想追捕它。 7.find_words函数中的参数到底应该设置什么?【参考方案8】:对 VB 不感兴趣? :) 我无法抗拒。我解决这个问题的方式与这里介绍的许多解决方案不同。
我的时间是:
将字典和单词前缀加载到哈希表中:0.5 到 1 秒。 查找单词:平均不到 10 毫秒。编辑:网络主机服务器上的字典加载时间比我的家用计算机长约 1 到 1.5 秒。
我不知道随着服务器负载的增加,时间会恶化到什么程度。
我在 .Net 中将我的解决方案编写为网页。 myvrad.com/boggle
我正在使用原始问题中引用的字典。
字母不会在一个单词中重复使用。只能找到 3 个字符或更长的单词。
我正在使用所有唯一单词前缀和单词的哈希表,而不是 trie。我不知道 trie's 所以我在那里学到了一些东西。除了完整的单词之外,创建一个单词前缀列表的想法最终使我的时间减少到一个可观的数字。
阅读代码 cmets 了解更多详情。
代码如下:
Imports System.Collections.Generic
Imports System.IO
Partial Class boggle_Default
'Bob Archer, 4/15/2009
'To avoid using a 2 dimensional array in VB I'm not using typical X,Y
'coordinate iteration to find paths.
'
'I have locked the code into a 4 by 4 grid laid out like so:
' abcd
' efgh
' ijkl
' mnop
'
'To find paths the code starts with a letter from a to p then
'explores the paths available around it. If a neighboring letter
'already exists in the path then we don't go there.
'
'Neighboring letters (grid points) are hard coded into
'a Generic.Dictionary below.
'Paths is a list of only valid Paths found.
'If a word prefix or word is not found the path is not
'added and extending that path is terminated.
Dim Paths As New Generic.List(Of String)
'NeighborsOf. The keys are the letters a to p.
'The value is a string of letters representing neighboring letters.
'The string of neighboring letters is split and iterated later.
Dim NeigborsOf As New Generic.Dictionary(Of String, String)
'BoggleLetters. The keys are mapped to the lettered grid of a to p.
'The values are what the user inputs on the page.
Dim BoggleLetters As New Generic.Dictionary(Of String, String)
'Used to store last postition of path. This will be a letter
'from a to p.
Dim LastPositionOfPath As String = ""
'I found a HashTable was by far faster than a Generic.Dictionary
' - about 10 times faster. This stores prefixes of words and words.
'I determined 792773 was the number of words and unique prefixes that
'will be generated from the dictionary file. This is a max number and
'the final hashtable will not have that many.
Dim HashTableOfPrefixesAndWords As New Hashtable(792773)
'Stores words that are found.
Dim FoundWords As New Generic.List(Of String)
'Just to validate what the user enters in the grid.
Dim ErrorFoundWithSubmittedLetters As Boolean = False
Public Sub BuildAndTestPathsAndFindWords(ByVal ThisPath As String)
'Word is the word correlating to the ThisPath parameter.
'This path would be a series of letters from a to p.
Dim Word As String = ""
'The path is iterated through and a word based on the actual
'letters in the Boggle grid is assembled.
For i As Integer = 0 To ThisPath.Length - 1
Word += Me.BoggleLetters(ThisPath.Substring(i, 1))
Next
'If my hashtable of word prefixes and words doesn't contain this Word
'Then this isn't a word and any further extension of ThisPath will not
'yield any words either. So exit sub to terminate exploring this path.
If Not HashTableOfPrefixesAndWords.ContainsKey(Word) Then Exit Sub
'The value of my hashtable is a boolean representing if the key if a word (true) or
'just a prefix (false). If true and at least 3 letters long then yay! word found.
If HashTableOfPrefixesAndWords(Word) AndAlso Word.Length > 2 Then Me.FoundWords.Add(Word)
'If my List of Paths doesn't contain ThisPath then add it.
'Remember only valid paths will make it this far. Paths not found
'in the HashTableOfPrefixesAndWords cause this sub to exit above.
If Not Paths.Contains(ThisPath) Then Paths.Add(ThisPath)
'Examine the last letter of ThisPath. We are looking to extend the path
'to our neighboring letters if any are still available.
LastPositionOfPath = ThisPath.Substring(ThisPath.Length - 1, 1)
'Loop through my list of neighboring letters (representing grid points).
For Each Neighbor As String In Me.NeigborsOf(LastPositionOfPath).ToCharArray()
'If I find a neighboring grid point that I haven't already used
'in ThisPath then extend ThisPath and feed the new path into
'this recursive function. (see recursive.)
If Not ThisPath.Contains(Neighbor) Then Me.BuildAndTestPathsAndFindWords(ThisPath & Neighbor)
Next
End Sub
Protected Sub ButtonBoggle_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles ButtonBoggle.Click
'User has entered the 16 letters and clicked the go button.
'Set up my Generic.Dictionary of grid points, I'm using letters a to p -
'not an x,y grid system. The values are neighboring points.
NeigborsOf.Add("a", "bfe")
NeigborsOf.Add("b", "cgfea")
NeigborsOf.Add("c", "dhgfb")
NeigborsOf.Add("d", "hgc")
NeigborsOf.Add("e", "abfji")
NeigborsOf.Add("f", "abcgkjie")
NeigborsOf.Add("g", "bcdhlkjf")
NeigborsOf.Add("h", "cdlkg")
NeigborsOf.Add("i", "efjnm")
NeigborsOf.Add("j", "efgkonmi")
NeigborsOf.Add("k", "fghlponj")
NeigborsOf.Add("l", "ghpok")
NeigborsOf.Add("m", "ijn")
NeigborsOf.Add("n", "ijkom")
NeigborsOf.Add("o", "jklpn")
NeigborsOf.Add("p", "klo")
'Retrieve letters the user entered.
BoggleLetters.Add("a", Me.TextBox1.Text.ToLower.Trim())
BoggleLetters.Add("b", Me.TextBox2.Text.ToLower.Trim())
BoggleLetters.Add("c", Me.TextBox3.Text.ToLower.Trim())
BoggleLetters.Add("d", Me.TextBox4.Text.ToLower.Trim())
BoggleLetters.Add("e", Me.TextBox5.Text.ToLower.Trim())
BoggleLetters.Add("f", Me.TextBox6.Text.ToLower.Trim())
BoggleLetters.Add("g", Me.TextBox7.Text.ToLower.Trim())
BoggleLetters.Add("h", Me.TextBox8.Text.ToLower.Trim())
BoggleLetters.Add("i", Me.TextBox9.Text.ToLower.Trim())
BoggleLetters.Add("j", Me.TextBox10.Text.ToLower.Trim())
BoggleLetters.Add("k", Me.TextBox11.Text.ToLower.Trim())
BoggleLetters.Add("l", Me.TextBox12.Text.ToLower.Trim())
BoggleLetters.Add("m", Me.TextBox13.Text.ToLower.Trim())
BoggleLetters.Add("n", Me.TextBox14.Text.ToLower.Trim())
BoggleLetters.Add("o", Me.TextBox15.Text.ToLower.Trim())
BoggleLetters.Add("p", Me.TextBox16.Text.ToLower.Trim())
'Validate user entered something with a length of 1 for all 16 textboxes.
For Each S As String In BoggleLetters.Keys
If BoggleLetters(S).Length <> 1 Then
ErrorFoundWithSubmittedLetters = True
Exit For
End If
Next
'If input is not valid then...
If ErrorFoundWithSubmittedLetters Then
'Present error message.
Else
'Else assume we have 16 letters to work with and start finding words.
Dim SB As New StringBuilder
Dim Time As String = String.Format("0:1:2:3", Date.Now.Hour.ToString(), Date.Now.Minute.ToString(), Date.Now.Second.ToString(), Date.Now.Millisecond.ToString())
Dim NumOfLetters As Integer = 0
Dim Word As String = ""
Dim TempWord As String = ""
Dim Letter As String = ""
Dim fr As StreamReader = Nothing
fr = New System.IO.StreamReader(HttpContext.Current.Request.MapPath("~/boggle/dic.txt"))
'First fill my hashtable with word prefixes and words.
'HashTable(PrefixOrWordString, BooleanTrueIfWordFalseIfPrefix)
While fr.Peek <> -1
Word = fr.ReadLine.Trim()
TempWord = ""
For i As Integer = 0 To Word.Length - 1
Letter = Word.Substring(i, 1)
'This optimization helped quite a bit. Words in the dictionary that begin
'with letters that the user did not enter in the grid shouldn't go in my hashtable.
'
'I realize most of the solutions went with a Trie. I'd never heard of that before,
'which is one of the neat things about SO, seeing how others approach challenges
'and learning some best practices.
'
'However, I didn't code a Trie in my solution. I just have a hashtable with
'all words in the dicitonary file and all possible prefixes for those words.
'A Trie might be faster but I'm not coding it now. I'm getting good times with this.
If i = 0 AndAlso Not BoggleLetters.ContainsValue(Letter) Then Continue While
TempWord += Letter
If Not HashTableOfPrefixesAndWords.ContainsKey(TempWord) Then
HashTableOfPrefixesAndWords.Add(TempWord, TempWord = Word)
End If
Next
End While
SB.Append("Number of Word Prefixes and Words in Hashtable: " & HashTableOfPrefixesAndWords.Count.ToString())
SB.Append("<br />")
SB.Append("Loading Dictionary: " & Time & " - " & String.Format("0:1:2:3", Date.Now.Hour.ToString(), Date.Now.Minute.ToString(), Date.Now.Second.ToString(), Date.Now.Millisecond.ToString()))
SB.Append("<br />")
Time = String.Format("0:1:2:3", Date.Now.Hour.ToString(), Date.Now.Minute.ToString(), Date.Now.Second.ToString(), Date.Now.Millisecond.ToString())
'This starts a path at each point on the grid an builds a path until
'the string of letters correlating to the path is not found in the hashtable
'of word prefixes and words.
Me.BuildAndTestPathsAndFindWords("a")
Me.BuildAndTestPathsAndFindWords("b")
Me.BuildAndTestPathsAndFindWords("c")
Me.BuildAndTestPathsAndFindWords("d")
Me.BuildAndTestPathsAndFindWords("e")
Me.BuildAndTestPathsAndFindWords("f")
Me.BuildAndTestPathsAndFindWords("g")
Me.BuildAndTestPathsAndFindWords("h")
Me.BuildAndTestPathsAndFindWords("i")
Me.BuildAndTestPathsAndFindWords("j")
Me.BuildAndTestPathsAndFindWords("k")
Me.BuildAndTestPathsAndFindWords("l")
Me.BuildAndTestPathsAndFindWords("m")
Me.BuildAndTestPathsAndFindWords("n")
Me.BuildAndTestPathsAndFindWords("o")
Me.BuildAndTestPathsAndFindWords("p")
SB.Append("Finding Words: " & Time & " - " & String.Format("0:1:2:3", Date.Now.Hour.ToString(), Date.Now.Minute.ToString(), Date.Now.Second.ToString(), Date.Now.Millisecond.ToString()))
SB.Append("<br />")
SB.Append("Num of words found: " & FoundWords.Count.ToString())
SB.Append("<br />")
SB.Append("<br />")
FoundWords.Sort()
SB.Append(String.Join("<br />", FoundWords.ToArray()))
'Output results.
Me.LiteralBoggleResults.Text = SB.ToString()
Me.PanelBoggleResults.Visible = True
End If
End Sub
End Class
【讨论】:
我在这里假设您使用的是 a-p 系统而不是 [x][y] 因为后者在 VB 中相当复杂?我花了一天时间试图获得一个2路动态数组,即:array(array(1,“hello”),1,“hello”,array()),仍然不知道该怎么做那:P 在 PHP 和 Perl 2 中,dim 数组很有趣。它可以在 VB 中完成,但我不会称其为有趣的过程。 Dim Arr(, ) As Integer = 1,1,0,0。 A-P 过程源于我把自己放在网格上并问,“我可以从这里去哪里?”我知道这是一个死板的解决方案,但它在这里有效。 哦,我喜欢 VB.NET... 我尝试了 URL,但它不起作用。我不得不自己将您的代码重新构建为 Windows 窗体并且它可以工作。谢谢。【参考方案9】:一看到问题陈述,我就想到了“Trie”。但是看到其他几位海报使用了这种方法,我寻找另一种方法只是为了与众不同。唉,Trie 方法表现更好。我在我的机器上运行了 Kent 的 Perl 解决方案,在调整它以使用我的字典文件后,它运行了 0.31 秒。我自己的 perl 实现需要 0.54 秒才能运行。
这是我的方法:
创建一个转换哈希来为合法转换建模。
遍历所有 16^3 个可能的三个字母组合。
在循环中,排除非法转换并重复访问 同一个正方形。形成所有合法的 3 字母序列并将它们存储在哈希中。然后遍历字典中的所有单词。
排除过长或过短的字词 在每个单词上滑动一个 3 字母窗口,查看它是否在步骤 2 中的 3 字母组合中。排除失败的单词。这消除了大多数不匹配。 如果仍然没有消除,请使用递归算法查看是否可以通过在拼图中创建路径来形成单词。 (这部分很慢,但不经常调用。)打印出我找到的单词。
我尝试了 3 个字母和 4 个字母的序列,但是 4 个字母的序列减慢了程序的速度。
在我的代码中,我使用 /usr/share/dict/words 作为我的字典。它是 MAC OS X 和许多 Unix 系统的标准配置。如果需要,您可以使用其他文件。要破解不同的谜题,只需更改变量@puzzle。这很容易适应更大的矩阵。您只需要更改 %transitions 哈希和 %legalTransitions 哈希。
此方案的优势在于代码短,数据结构简单。
这是 Perl 代码(我知道它使用了太多全局变量):
#!/usr/bin/perl
use Time::HiRes qw time ;
sub readFile($);
sub findAllPrefixes($);
sub isWordTraceable($);
sub findWordsInPuzzle(@);
my $startTime = time;
# Puzzle to solve
my @puzzle = (
F, X, I, E,
A, M, L, O,
E, W, B, X,
A, S, T, U
);
my $minimumWordLength = 3;
my $maximumPrefixLength = 3; # I tried four and it slowed down.
# Slurp the word list.
my $wordlistFile = "/usr/share/dict/words";
my @words = split(/\n/, uc(readFile($wordlistFile)));
print "Words loaded from word list: " . scalar @words . "\n";
print "Word file load time: " . (time - $startTime) . "\n";
my $postLoad = time;
# Define the legal transitions from one letter position to another.
# Positions are numbered 0-15.
# 0 1 2 3
# 4 5 6 7
# 8 9 10 11
# 12 13 14 15
my %transitions = (
-1 => [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15],
0 => [1,4,5],
1 => [0,2,4,5,6],
2 => [1,3,5,6,7],
3 => [2,6,7],
4 => [0,1,5,8,9],
5 => [0,1,2,4,6,8,9,10],
6 => [1,2,3,5,7,9,10,11],
7 => [2,3,6,10,11],
8 => [4,5,9,12,13],
9 => [4,5,6,8,10,12,13,14],
10 => [5,6,7,9,11,13,14,15],
11 => [6,7,10,14,15],
12 => [8,9,13],
13 => [8,9,10,12,14],
14 => [9,10,11,13,15],
15 => [10,11,14]
);
# Convert the transition matrix into a hash for easy access.
my %legalTransitions = ();
foreach my $start (keys %transitions)
my $legalRef = $transitions$start;
foreach my $stop (@$legalRef)
my $index = ($start + 1) * (scalar @puzzle) + ($stop + 1);
$legalTransitions$index = 1;
my %prefixesInPuzzle = findAllPrefixes($maximumPrefixLength);
print "Find prefixes time: " . (time - $postLoad) . "\n";
my $postPrefix = time;
my @wordsFoundInPuzzle = findWordsInPuzzle(@words);
print "Find words in puzzle time: " . (time - $postPrefix) . "\n";
print "Unique prefixes found: " . (scalar keys %prefixesInPuzzle) . "\n";
print "Words found (" . (scalar @wordsFoundInPuzzle) . ") :\n " . join("\n ", @wordsFoundInPuzzle) . "\n";
print "Total Elapsed time: " . (time - $startTime) . "\n";
###########################################
sub readFile($)
my ($filename) = @_;
my $contents;
if (-e $filename)
# This is magic: it opens and reads a file into a scalar in one line of code.
# See http://www.perl.com/pub/a/2003/11/21/slurp.html
$contents = do local( @ARGV, $/ ) = $filename ; <> ;
else
$contents = '';
return $contents;
# Is it legal to move from the first position to the second? They must be adjacent.
sub isLegalTransition($$)
my ($pos1,$pos2) = @_;
my $index = ($pos1 + 1) * (scalar @puzzle) + ($pos2 + 1);
return $legalTransitions$index;
# Find all prefixes where $minimumWordLength <= length <= $maxPrefixLength
#
# $maxPrefixLength ... Maximum length of prefix we will store. Three gives best performance.
sub findAllPrefixes($)
my ($maxPrefixLength) = @_;
my %prefixes = ();
my $puzzleSize = scalar @puzzle;
# Every possible N-letter combination of the letters in the puzzle
# can be represented as an integer, though many of those combinations
# involve illegal transitions, duplicated letters, etc.
# Iterate through all those possibilities and eliminate the illegal ones.
my $maxIndex = $puzzleSize ** $maxPrefixLength;
for (my $i = 0; $i < $maxIndex; $i++)
my @path;
my $remainder = $i;
my $prevPosition = -1;
my $prefix = '';
my %usedPositions = ();
for (my $prefixLength = 1; $prefixLength <= $maxPrefixLength; $prefixLength++)
my $position = $remainder % $puzzleSize;
# Is this a valid step?
# a. Is the transition legal (to an adjacent square)?
if (! isLegalTransition($prevPosition, $position))
last;
# b. Have we repeated a square?
if ($usedPositions$position)
last;
else
$usedPositions$position = 1;
# Record this prefix if length >= $minimumWordLength.
$prefix .= $puzzle[$position];
if ($prefixLength >= $minimumWordLength)
$prefixes$prefix = 1;
push @path, $position;
$remainder -= $position;
$remainder /= $puzzleSize;
$prevPosition = $position;
# end inner for
# end outer for
return %prefixes;
# Loop through all words in dictionary, looking for ones that are in the puzzle.
sub findWordsInPuzzle(@)
my @allWords = @_;
my @wordsFound = ();
my $puzzleSize = scalar @puzzle;
WORD: foreach my $word (@allWords)
my $wordLength = length($word);
if ($wordLength > $puzzleSize || $wordLength < $minimumWordLength)
# Reject word as too short or too long.
elsif ($wordLength <= $maximumPrefixLength )
# Word should be in the prefix hash.
if ($prefixesInPuzzle$word)
push @wordsFound, $word;
else
# Scan through the word using a window of length $maximumPrefixLength, looking for any strings not in our prefix list.
# If any are found that are not in the list, this word is not possible.
# If no non-matches are found, we have more work to do.
my $limit = $wordLength - $maximumPrefixLength + 1;
for (my $startIndex = 0; $startIndex < $limit; $startIndex ++)
if (! $prefixesInPuzzlesubstr($word, $startIndex, $maximumPrefixLength))
next WORD;
if (isWordTraceable($word))
# Additional test necessary: see if we can form this word by following legal transitions
push @wordsFound, $word;
return @wordsFound;
# Is it possible to trace out the word using only legal transitions?
sub isWordTraceable($)
my $word = shift;
return traverse([split(//, $word)], [-1]); # Start at special square -1, which may transition to any square in the puzzle.
# Recursively look for a path through the puzzle that matches the word.
sub traverse($$)
my ($lettersRef, $pathRef) = @_;
my $index = scalar @$pathRef - 1;
my $position = $pathRef->[$index];
my $letter = $lettersRef->[$index];
my $branchesRef = $transitions$position;
BRANCH: foreach my $branch (@$branchesRef)
if ($puzzle[$branch] eq $letter)
# Have we used this position yet?
foreach my $usedBranch (@$pathRef)
if ($usedBranch == $branch)
next BRANCH;
if (scalar @$lettersRef == $index + 1)
return 1; # End of word and success.
push @$pathRef, $branch;
if (traverse($lettersRef, $pathRef))
return 1; # Recursive success.
else
pop @$pathRef;
return 0; # No path found. Failed.
【讨论】:
字典的位置变了吗?我试图找到字典单词,因为我想将我的解决方案与所有人进行比较,但在 /usr/share/dict 的给定链接上找不到它。我知道这是很老的线程,但如果你能指出我,那就太好了。提前感谢您的帮助。 暂时没有我的 Mac。您所需要的只是一个包含英文单词的文件,一行一行,用换行符分隔。您可以在 Internet 上找到这样的文件。一个在这里:mieliestronk.com/corncob_lowercase.txt,但可能有比这更多的单词列表。 非常感谢您的回复。我在 ubuntu 文件中发现了这一点。【参考方案10】:我知道我来晚了,但我不久前用 PHP 做了一个 - 也只是为了好玩...
http://www.lostsockdesign.com.au/sandbox/boggle/index.php?letters=fxieamloewbxastu 在 0.90108 秒
内找到 75 个单词(133 分)F.........X..I..............E...............
A......................................M..............................L............................O...............................
E....................W............................B..........................X
A..................S..................................................T.................U....
给出程序实际在做什么的一些指示 - 每个字母是它开始查看模式的地方,而每个 '.'显示了它试图采取的路径。 '.' 越多。它搜索得越远。
如果你想要代码,请告诉我...这是 PHP 和 HTML 的可怕组合,从来没有想过要见识见识,所以我不敢在这里发布它:P
【讨论】:
【参考方案11】:我花了 3 个月的时间来解决 10 个最佳点密集 5x5 Boggle 板问题。
问题现已解决,并在 5 个网页上全面披露。有问题请联系我。
棋盘分析算法使用显式堆栈通过具有直接子信息的有向无环字图和时间戳跟踪机制伪递归地遍历棋盘方格。这很可能是世界上最先进的词典数据结构。
该方案每秒在四核上评估大约 10,000 个非常好的电路板。 (9500+ 分)
父网页:
DeepSearch.c - http://www.pathcom.com/~vadco/deep.html
组件网页:
最佳记分牌 - http://www.pathcom.com/~vadco/binary.html
高级词典结构 - http://www.pathcom.com/~vadco/adtdawg.html
电路板分析算法 - http://www.pathcom.com/~vadco/guns.html
并行批处理 - http://www.pathcom.com/~vadco/parallel.html
- 这种综合性的工作只会让要求最好的人感兴趣。
【讨论】:
您的分析很有趣,但从技术上讲,您的结果并不是 Boggle 板。 5x5 boggle 游戏包括一个包含面 BJKQXZ 的骰子,您的实现明确排除了所有这些字母,因此在真正的 Boggle 游戏中实际上不可能出现棋盘位置。【参考方案12】:随着搜索的继续,您的搜索算法是否会不断减少单词列表?
例如,在上面的搜索中,您的单词只能以 13 个字母开头(有效地减少了一半的起始字母)。
当您添加更多字母排列时,它会进一步减少可用词集,从而减少必要的搜索。
我会从那里开始。
【讨论】:
【参考方案13】:我必须更多地考虑一个完整的解决方案,但作为一个方便的优化,我想知道是否值得预先计算一个基于二元和三元(2 和 3 字母组合)的频率表字典中的所有单词,并使用它来确定搜索的优先级。我会选择单词的开头字母。因此,如果您的字典包含“印度”、“水”、“极端”和“非凡”等词,那么您的预计算表可能是:
'IN': 1
'WA': 1
'EX': 2
然后按照共性的顺序(先EX,后WA/IN)搜索这些digram
【讨论】:
【参考方案14】:首先,阅读一位 C# 语言设计者如何解决相关问题: http://blogs.msdn.com/ericlippert/archive/2009/02/04/a-nasality-talisman-for-the-sultana-analyst.aspx.
像他一样,您可以从字典和规范化单词开始,方法是创建字典,从按字母顺序排序的字母数组到可以从这些字母拼写的单词列表。
接下来,开始从板上创建可能的单词并查找它们。我怀疑这会让你走得很远,但肯定有更多的技巧可以加快速度。
【讨论】:
【参考方案15】:我建议根据单词制作一棵字母树。树将由一个字母结构组成,如下所示:
letter: char
isWord: boolean
然后构建树,每个深度添加一个新字母。换句话说,第一层是字母表;然后从这些树中的每一个中,还有另外 26 个条目,依此类推,直到您拼出所有单词。挂在这棵解析树上,它会让所有可能的答案更快地查找。
使用此解析树,您可以非常快速地找到解决方案。伪代码如下:
BEGIN:
For each letter:
if the struct representing it on the current depth has isWord == true, enter it as an answer.
Cycle through all its neighbors; if there is a child of the current node corresponding to the letter, recursively call BEGIN on it.
这可以通过一些动态编程来加速。例如,在您的示例中,两个“A”都在“E”和“W”旁边,它们(从它们击中它们的点开始)将是相同的。我没有足够的时间来真正拼出这个代码,但我认为你可以收集这个想法。
另外,如果您在 Google 上搜索“Boggle solver”,我相信您会找到其他解决方案。
【讨论】:
【参考方案16】:只是为了好玩,我在 bash 中实现了一个。 它不是超快,但合理。
http://dev.xkyle.com/bashboggle/
【讨论】:
【参考方案17】:搞笑。由于同一个该死的游戏,我几天前几乎发布了同样的问题!但是我没有,因为只是在 google 上搜索了boggle solver python 并得到了我想要的所有答案。
【讨论】:
我不知道它的流行名称是“boggle”,但我确实在 google 上找到了一些东西,我只是想看看人们会在 SO 上想出什么。 :)【参考方案18】:我意识到这个问题的时间已经过去了,但是由于我自己正在研究求解器,并且在谷歌搜索时偶然发现了这个问题,我想我应该发布对我的参考,因为它似乎与一些不同其他人。
我选择为游戏板使用平面数组,并从板上的每个字母进行递归搜索,从有效邻居遍历到有效邻居,如果当前字母列表中存在有效前缀,则扩展搜索一个索引。在遍历当前单词的概念时,是板中的索引列表,而不是组成单词的字母。检查索引时,将索引转换为字母并完成检查。
索引是一个蛮力字典,有点像特里树,但允许对索引进行 Pythonic 查询。如果 'cat' 和 'cater' 这两个词在列表中,您会在字典中找到:
d = 'c': ['cat','cater'],
'ca': ['cat','cater'],
'cat': ['cat','cater'],
'cate': ['cater'],
'cater': ['cater'],
所以如果 current_word 是 'ca' 你知道它是一个有效的前缀,因为'ca' in d
返回 True (所以继续板遍历)。如果 current_word 是 'cat',那么你就知道它是一个有效的词,因为它是一个有效的前缀,'cat' in d['cat']
也返回 True。
如果感觉这样允许一些看起来不太慢的可读代码。像其他人一样,这个系统的开销是读取/构建索引。解板是非常麻烦的。
代码位于http://gist.github.com/268079。它是故意垂直和幼稚的,有很多明确的有效性检查,因为我想理解这个问题,而不是用一堆魔法或晦涩难懂的东西来处理它。
【讨论】:
【参考方案19】:我用 C++ 编写了我的求解器。我实现了一个自定义树结构。我不确定它可以被认为是一个特里,但它是相似的。每个节点有 26 个分支,每个字母 1 个。我与我的字典的分支平行地遍历了boggle board的分支。如果字典中不存在该分支,我将停止在 Boggle 板上搜索它。我将板上的所有字母转换为整数。所以'A' = 0。因为它只是数组,所以查找总是 O(1)。每个节点存储它是否完成了一个单词以及它的子节点中存在多少个单词。当找到单词时修剪树以减少重复搜索相同单词。我相信剪枝也是 O(1)。
CPU:奔腾 SU2700 1.3GHz 内存:3GB
在 在 4 秒内解决 100x100 Boggle (boggle.txt)。找到约 44,000 个单词。 解决 4x4 Boggle 的速度太快,无法提供有意义的基准。 :)
Fast Boggle Solver GitHub Repo
【讨论】:
【参考方案20】:给定一个有 N 行和 M 列的 Boggle 板,让我们假设以下内容:
N*M 远大于可能的单词数 N*M 远大于可能的最长单词在这些假设下,这个解决方案的复杂度是 O(N*M)。
我认为从许多方面比较这个示例板的运行时间没有抓住重点,但为了完整起见,这个解决方案在我的现代 MacBook Pro 上的完成时间为
此解决方案将为语料库中的每个单词找到所有可能的路径。
#!/usr/bin/env ruby
# Example usage: ./boggle-solver --board "fxie amlo ewbx astu"
autoload :Matrix, 'matrix'
autoload :OptionParser, 'optparse'
DEFAULT_CORPUS_PATH = '/usr/share/dict/words'.freeze
# Functions
def filter_corpus(matrix, corpus, min_word_length)
board_char_counts = Hash.new(0)
matrix.each |c| board_char_counts[c] += 1
max_word_length = matrix.row_count * matrix.column_count
boggleable_regex = /^[#board_char_counts.keys.reduce(:+)]#min_word_length,#max_word_length$/
corpus.select |w| w.match boggleable_regex .select do |w|
word_char_counts = Hash.new(0)
w.each_char |c| word_char_counts[c] += 1
word_char_counts.all? |c, count| board_char_counts[c] >= count
end
end
def neighbors(point, matrix)
i, j = point
([i-1, 0].max .. [i+1, matrix.row_count-1].min).inject([]) do |r, new_i|
([j-1, 0].max .. [j+1, matrix.column_count-1].min).inject(r) do |r, new_j|
neighbor = [new_i, new_j]
neighbor.eql?(point) ? r : r << neighbor
end
end
end
def expand_path(path, word, matrix)
return [path] if path.length == word.length
next_char = word[path.length]
viable_neighbors = neighbors(path[-1], matrix).select do |point|
!path.include?(point) && matrix.element(*point).eql?(next_char)
end
viable_neighbors.inject([]) do |result, point|
result + expand_path(path.dup << point, word, matrix)
end
end
def find_paths(word, matrix)
result = []
matrix.each_with_index do |c, i, j|
result += expand_path([[i, j]], word, matrix) if c.eql?(word[0])
end
result
end
def solve(matrix, corpus, min_word_length: 3)
boggleable_corpus = filter_corpus(matrix, corpus, min_word_length)
boggleable_corpus.inject() do |result, w|
paths = find_paths(w, matrix)
result[w] = paths unless paths.empty?
result
end
end
# Script
options = corpus_path: DEFAULT_CORPUS_PATH
option_parser = OptionParser.new do |opts|
opts.banner = 'Usage: boggle-solver --board <value> [--corpus <value>]'
opts.on('--board BOARD', String, 'The board (e.g. "fxi aml ewb ast")') do |b|
options[:board] = b
end
opts.on('--corpus CORPUS_PATH', String, 'Corpus file path') do |c|
options[:corpus_path] = c
end
opts.on_tail('-h', '--help', 'Shows usage') do
STDOUT.puts opts
exit
end
end
option_parser.parse!
unless options[:board]
STDERR.puts option_parser
exit false
end
unless File.file? options[:corpus_path]
STDERR.puts "No corpus exists - #options[:corpus_path]"
exit false
end
rows = options[:board].downcase.scan(/\S+/).map |row| row.scan(/./)
raw_corpus = File.readlines(options[:corpus_path])
corpus = raw_corpus.map |w| w.downcase.rstrip .uniq.sort
solution = solve(Matrix.rows(rows), corpus)
solution.each_pair do |w, paths|
STDOUT.puts w
paths.each do |path|
STDOUT.puts "\t" + path.map |point| point.inspect .join(', ')
end
end
STDOUT.puts "TOTAL: #solution.count"
【讨论】:
【参考方案21】:这个解决方案还给出了在给定板上搜索的方向
算法:
1. Uses trie to save all the word in the english to fasten the search
2. The uses DFS to search the words in Boggle
输出:
Found "pic" directions from (4,0)(p) go → →
Found "pick" directions from (4,0)(p) go → → ↑
Found "pickman" directions from (4,0)(p) go → → ↑ ↑ ↖ ↑
Found "picket" directions from (4,0)(p) go → → ↑ ↗ ↖
Found "picked" directions from (4,0)(p) go → → ↑ ↗ ↘
Found "pickle" directions from (4,0)(p) go → → ↑ ↘ →
代码:
from collections import defaultdict
from nltk.corpus import words
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
english_words = words.words()
# If you wan to remove stop words
# stop_words = set(stopwords.words('english'))
# english_words = [w for w in english_words if w not in stop_words]
boggle = [
['c', 'n', 't', 's', 's'],
['d', 'a', 't', 'i', 'n'],
['o', 'o', 'm', 'e', 'l'],
['s', 'i', 'k', 'n', 'd'],
['p', 'i', 'c', 'l', 'e']
]
# Instead of X and Y co-ordinates
# better to use Row and column
lenc = len(boggle[0])
lenr = len(boggle)
# Initialize trie datastructure
trie_node = 'valid': False, 'next':
# lets get the delta to find all the nighbors
neighbors_delta = [
(-1,-1, "↖"),
(-1, 0, "↑"),
(-1, 1, "↗"),
(0, -1, "←"),
(0, 1, "→"),
(1, -1, "↙"),
(1, 0, "↓"),
(1, 1, "↘"),
]
def gen_trie(word, node):
"""udpates the trie datastructure using the given word"""
if not word:
return
if word[0] not in node:
node[word[0]] = 'valid': len(word) == 1, 'next':
# recursively build trie
gen_trie(word[1:], node[word[0]])
def build_trie(words, trie):
"""Builds trie data structure from the list of words given"""
for word in words:
gen_trie(word, trie)
return trie
def get_neighbors(r, c):
"""Returns the neighbors for a given co-ordinates"""
n = []
for neigh in neighbors_delta:
new_r = r + neigh[0]
new_c = c + neigh[1]
if (new_r >= lenr) or (new_c >= lenc) or (new_r < 0) or (new_c < 0):
continue
n.append((new_r, new_c, neigh[2]))
return n
def dfs(r, c, visited, trie, now_word, direction):
"""Scan the graph using DFS"""
if (r, c) in visited:
return
letter = boggle[r][c]
visited.append((r, c))
if letter in trie:
now_word += letter
if trie[letter]['valid']:
print('Found "" '.format(now_word, direction))
neighbors = get_neighbors(r, c)
for n in neighbors:
dfs(n[0], n[1], visited[::], trie[letter], now_word, direction + " " + n[2])
def main(trie_node):
"""Initiate the search for words in boggle"""
trie_node = build_trie(english_words, trie_node)
# print the board
print("Given board")
for i in range(lenr):print (boggle[i])
print ('\n')
for r in range(lenr):
for c in range(lenc):
letter = boggle[r][c]
dfs(r, c, [], trie_node, '', 'directions from (,)() go '.format(r, c, letter))
if __name__ == '__main__':
main(trie_node)
【讨论】:
【参考方案22】:我有implemented a solution in OCaml。它将字典预编译为 trie,并使用两个字母的序列频率来消除永远不会出现在单词中的边缘,以进一步加快处理速度。
它在 0.35 毫秒内解决了您的示例板(另外还有 6 毫秒的启动时间,这主要与将 trie 加载到内存中有关)。
找到的解决方案:
["swami"; "emile"; "limbs"; "limbo"; "limes"; "amble"; "tubs"; "stub";
"swam"; "semi"; "seam"; "awes"; "buts"; "bole"; "boil"; "west"; "east";
"emil"; "lobs"; "limb"; "lime"; "lima"; "mesa"; "mews"; "mewl"; "maws";
"milo"; "mile"; "awes"; "amie"; "axle"; "elma"; "fame"; "ubs"; "tux"; "tub";
"twa"; "twa"; "stu"; "saw"; "sea"; "sew"; "sea"; "awe"; "awl"; "but"; "btu";
"box"; "bmw"; "was"; "wax"; "oil"; "lox"; "lob"; "leo"; "lei"; "lie"; "mes";
"mew"; "mae"; "maw"; "max"; "mil"; "mix"; "awe"; "awl"; "elm"; "eli"; "fax"]
【讨论】:
这很好,但是这里发布的所有时间都涉及将字典加载到内存中的任何“启动”时间,因此将 0.35 与其他时间进行比较远非准确。另外,您使用的是不同的字典吗?你漏掉了一些字。无论哪种方式,+1 启动时间需要 6 毫秒,因此您正在查看 6.35 毫秒的完整运行时间。我正在使用我本地的/usr/share/dict
字典,并且确实缺少某些单词(例如EMBOLE)。【参考方案23】:
Node.JS javascript 解决方案。在不到一秒的时间内计算所有 100 个唯一单词,其中包括阅读字典文件 (MBA 2012)。
输出: ["FAM","TUX","TUB","FAE","ELI","ELM","ELB","TWA","TWA","SAW","AMI","SWA"," SWA","AME","SEA","SEW","AES","AWL","AWE","SEA","AWA","MIX","MIL","AST","ASE" ,"MAX","MAE","MAW","MEW","AWE","MES","AWL","LIE","LIM","AWA","AES","BUT"," BLO","WAS","WAE","WEA","LEI","LEO","LOB","LOX","WEM","OIL","OLM","WEA","WAE" ,"WAX","WAF","MILO","EAST","WAME","TWAS","TWAE","EMIL","WEAM","OIME","AXIL","WEST"," TWAE","LIMB","WASE","WAST","BLEO","STUB","BOIL","BOLE","LIME","SAWT","LIMA","MESA","MEWL" ,"AXLE","FAME","ASEM","MILE","AMIL","SEAX","SEAM","SEMI","SWAM","AMBO","AMLI","AXILE"," AMBLE","SWAMI","AWEST","AWEST","LIMAX","LIMES","LIMBU","LIMBO","EMBOX","SEMBLE","EMBOLE","WAMBLE","FAMBLE" ]
代码:
var fs = require('fs')
var Node = function(value, row, col)
this.value = value
this.row = row
this.col = col
var Path = function()
this.nodes = []
Path.prototype.push = function(node)
this.nodes.push(node)
return this
Path.prototype.contains = function(node)
for (var i = 0, ii = this.nodes.length; i < ii; i++)
if (this.nodes[i] === node)
return true
return false
Path.prototype.clone = function()
var path = new Path()
path.nodes = this.nodes.slice(0)
return path
Path.prototype.to_word = function()
var word = ''
for (var i = 0, ii = this.nodes.length; i < ii; ++i)
word += this.nodes[i].value
return word
var Board = function(nodes, dict)
// Expects n x m array.
this.nodes = nodes
this.words = []
this.row_count = nodes.length
this.col_count = nodes[0].length
this.dict = dict
Board.from_raw = function(board, dict)
var ROW_COUNT = board.length
, COL_COUNT = board[0].length
var nodes = []
// Replace board with Nodes
for (var i = 0, ii = ROW_COUNT; i < ii; ++i)
nodes.push([])
for (var j = 0, jj = COL_COUNT; j < jj; ++j)
nodes[i].push(new Node(board[i][j], i, j))
return new Board(nodes, dict)
Board.prototype.toString = function()
return JSON.stringify(this.nodes)
Board.prototype.update_potential_words = function(dict)
for (var i = 0, ii = this.row_count; i < ii; ++i)
for (var j = 0, jj = this.col_count; j < jj; ++j)
var node = this.nodes[i][j]
, path = new Path()
path.push(node)
this.dfs_search(path)
Board.prototype.on_board = function(row, col)
return 0 <= row && row < this.row_count && 0 <= col && col < this.col_count
Board.prototype.get_unsearched_neighbours = function(path)
var last_node = path.nodes[path.nodes.length - 1]
var offsets = [
[-1, -1], [-1, 0], [-1, +1]
, [ 0, -1], [ 0, +1]
, [+1, -1], [+1, 0], [+1, +1]
]
var neighbours = []
for (var i = 0, ii = offsets.length; i < ii; ++i)
var offset = offsets[i]
if (this.on_board(last_node.row + offset[0], last_node.col + offset[1]))
var potential_node = this.nodes[last_node.row + offset[0]][last_node.col + offset[1]]
if (!path.contains(potential_node))
// Create a new path if on board and we haven't visited this node yet.
neighbours.push(potential_node)
return neighbours
Board.prototype.dfs_search = function(path)
var path_word = path.to_word()
if (this.dict.contains_exact(path_word) && path_word.length >= 3)
this.words.push(path_word)
var neighbours = this.get_unsearched_neighbours(path)
for (var i = 0, ii = neighbours.length; i < ii; ++i)
var neighbour = neighbours[i]
var new_path = path.clone()
new_path.push(neighbour)
if (this.dict.contains_prefix(new_path.to_word()))
this.dfs_search(new_path)
var Dict = function()
this.dict_array = []
var dict_data = fs.readFileSync('./web2', 'utf8')
var dict_array = dict_data.split('\n')
for (var i = 0, ii = dict_array.length; i < ii; ++i)
dict_array[i] = dict_array[i].toUpperCase()
this.dict_array = dict_array.sort()
Dict.prototype.contains_prefix = function(prefix)
// Binary search
return this.search_prefix(prefix, 0, this.dict_array.length)
Dict.prototype.contains_exact = function(exact)
// Binary search
return this.search_exact(exact, 0, this.dict_array.length)
Dict.prototype.search_prefix = function(prefix, start, end)
if (start >= end)
// If no more place to search, return no matter what.
return this.dict_array[start].indexOf(prefix) > -1
var middle = Math.floor((start + end)/2)
if (this.dict_array[middle].indexOf(prefix) > -1)
// If we prefix exists, return true.
return true
else
// Recurse
if (prefix <= this.dict_array[middle])
return this.search_prefix(prefix, start, middle - 1)
else
return this.search_prefix(prefix, middle + 1, end)
Dict.prototype.search_exact = function(exact, start, end)
if (start >= end)
// If no more place to search, return no matter what.
return this.dict_array[start] === exact
var middle = Math.floor((start + end)/2)
if (this.dict_array[middle] === exact)
// If we prefix exists, return true.
return true
else
// Recurse
if (exact <= this.dict_array[middle])
return this.search_exact(exact, start, middle - 1)
else
return this.search_exact(exact, middle + 1, end)
var board = [
['F', 'X', 'I', 'E']
, ['A', 'M', 'L', 'O']
, ['E', 'W', 'B', 'X']
, ['A', 'S', 'T', 'U']
]
var dict = new Dict()
var b = Board.from_raw(board, dict)
b.update_potential_words()
console.log(JSON.stringify(b.words.sort(function(a, b)
return a.length - b.length
)))
【讨论】:
【参考方案24】:所以我想添加另一种 PHP 方法来解决这个问题,因为每个人都喜欢 PHP。 我想做一些重构,比如对字典文件使用正则表达式匹配,但现在我只是将整个字典文件加载到 wordList 中。
我使用链表的想法做到了这一点。每个 Node 都有一个字符值、一个位置值和一个 next 指针。
位置值是我发现两个节点是否连接的方式。
1 2 3 4
11 12 13 14
21 22 23 24
31 32 33 34
因此,使用该网格,我知道如果第一个节点的位置等于同一行的第二个节点位置 +/- 1,上下行的 +/- 9、10、11,则两个节点已连接。
我使用递归进行主搜索。它从 wordList 中取出一个单词,找到所有可能的起点,然后递归地找到下一个可能的连接,记住它不能转到它已经使用的位置(这就是我添加 $notInLoc 的原因)。
无论如何,我知道它需要一些重构,并且很想听听有关如何使其更清洁的想法,但它会根据我正在使用的字典文件产生正确的结果。根据板上元音和组合的数量,大约需要 3 到 6 秒。我知道一旦我 preg_match 字典结果,那将大大减少。
<?php
ini_set('xdebug.var_display_max_depth', 20);
ini_set('xdebug.var_display_max_children', 1024);
ini_set('xdebug.var_display_max_data', 1024);
class Node
var $loc;
function __construct($value)
$this->value = $value;
$next = null;
class Boggle
var $root;
var $locList = array (1, 2, 3, 4, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34);
var $wordList = [];
var $foundWords = [];
function __construct($board)
// Takes in a board string and creates all the nodes
$node = new Node($board[0]);
$node->loc = $this->locList[0];
$this->root = $node;
for ($i = 1; $i < strlen($board); $i++)
$node->next = new Node($board[$i]);
$node->next->loc = $this->locList[$i];
$node = $node->next;
// Load in a dictionary file
// Use regexp to elimate all the words that could never appear and load the
// rest of the words into wordList
$handle = fopen("dict.txt", "r");
if ($handle)
while (($line = fgets($handle)) !== false)
// process the line read.
$line = trim($line);
if (strlen($line) > 2)
$this->wordList[] = trim($line);
fclose($handle);
else
// error opening the file.
echo "Problem with the file.";
function isConnected($node1, $node2)
// Determines if 2 nodes are connected on the boggle board
return (($node1->loc == $node2->loc + 1) || ($node1->loc == $node2->loc - 1) ||
($node1->loc == $node2->loc - 9) || ($node1->loc == $node2->loc - 10) || ($node1->loc == $node2->loc - 11) ||
($node1->loc == $node2->loc + 9) || ($node1->loc == $node2->loc + 10) || ($node1->loc == $node2->loc + 11)) ? true : false;
function find($value, $notInLoc = [])
// Returns a node with the value that isn't in a location
$current = $this->root;
while($current)
if ($current->value == $value && !in_array($current->loc, $notInLoc))
return $current;
if (isset($current->next))
$current = $current->next;
else
break;
return false;
function findAll($value)
// Returns an array of nodes with a specific value
$current = $this->root;
$foundNodes = [];
while ($current)
if ($current->value == $value)
$foundNodes[] = $current;
if (isset($current->next))
$current = $current->next;
else
break;
return (empty($foundNodes)) ? false : $foundNodes;
function findAllConnectedTo($node, $value, $notInLoc = [])
// Returns an array of nodes that are connected to a specific node and
// contain a specific value and are not in a certain location
$nodeList = $this->findAll($value);
$newList = [];
if ($nodeList)
foreach ($nodeList as $node2)
if (!in_array($node2->loc, $notInLoc) && $this->isConnected($node, $node2))
$newList[] = $node2;
return (empty($newList)) ? false : $newList;
function inner($word, $list, $i = 0, $notInLoc = [])
$i++;
foreach($list as $node)
$notInLoc[] = $node->loc;
if ($list2 = $this->findAllConnectedTo($node, $word[$i], $notInLoc))
if ($i == (strlen($word) - 1))
return true;
else
return $this->inner($word, $list2, $i, $notInLoc);
return false;
function findWord($word)
if ($list = $this->findAll($word[0]))
return $this->inner($word, $list);
return false;
function findAllWords()
foreach($this->wordList as $word)
if ($this->findWord($word))
$this->foundWords[] = $word;
function displayBoard()
$current = $this->root;
for ($i=0; $i < 4; $i++)
echo $current->value . " " . $current->next->value . " " . $current->next->next->value . " " . $current->next->next->next->value . "<br />";
if ($i < 3)
$current = $current->next->next->next->next;
function randomBoardString()
return substr(str_shuffle(str_repeat("abcdefghijklmnopqrstuvwxyz", 16)), 0, 16);
$myBoggle = new Boggle(randomBoardString());
$myBoggle->displayBoard();
$x = microtime(true);
$myBoggle->findAllWords();
$y = microtime(true);
echo ($y-$x);
var_dump($myBoggle->foundWords);
?>
【讨论】:
【参考方案25】:我知道我在聚会上真的迟到了,但作为编码练习,我已经用几种编程语言(C++、Java、Go、C#、Python、Ruby、JavaScript、Julia、Lua、PHP、 Perl),我认为有人可能对这些感兴趣,所以我在这里留下链接: https://github.com/AmokHuginnsson/boggle-solvers
【讨论】:
【参考方案26】:这是在 NLTK 工具包中使用预定义单词的解决方案 NLTK 有 nltk.corpus 包,我们有一个叫做 words 的包,它包含超过 20 万个英文单词,你可以简单地在你的程序中使用。
创建矩阵后,将其转换为字符数组并执行此代码
import nltk
from nltk.corpus import words
from collections import Counter
def possibleWords(input, charSet):
for word in input:
dict = Counter(word)
flag = 1
for key in dict.keys():
if key not in charSet:
flag = 0
if flag == 1 and len(word)>5: #its depends if you want only length more than 5 use this otherwise remove that one.
print(word)
nltk.download('words')
word_list = words.words()
# prints 236736
print(len(word_list))
charSet = ['h', 'e', 'l', 'o', 'n', 'v', 't']
possibleWords(word_list, charSet)
输出:
eleven
eleventh
elevon
entente
entone
ethene
ethenol
evolve
evolvent
hellhole
helvell
hooven
letten
looten
nettle
nonene
nonent
nonlevel
notelet
novelet
novelette
novene
teenet
teethe
teevee
telethon
tellee
tenent
tentlet
theelol
toetoe
tonlet
toothlet
tootle
tottle
vellon
velvet
velveteen
venene
vennel
venthole
voeten
volent
volvelle
volvent
voteen
希望你能明白。
【讨论】:
【参考方案27】:这是我的 java 实现:https://github.com/zouzhile/interview/blob/master/src/com/interview/algorithms/tree/BoggleSolver.java
Trie 构建耗时 0 小时 0 分钟 1 秒 532 毫秒 单词搜索耗时 0 小时 0 分钟 0 秒 92 毫秒
eel eeler eely eer eke eker eld eleut elk ell
elle epee epihippus ere erept err error erupt eurus eye
eyer eyey hip hipe hiper hippish hipple hippus his hish
hiss hist hler hsi ihi iphis isis issue issuer ist
isurus kee keek keeker keel keeler keep keeper keld kele
kelek kelep kelk kell kelly kelp kelper kep kepi kept
ker kerel kern keup keuper key kyl kyle lee leek
leeky leep leer lek leo leper leptus lepus ler leu
ley lleu lue lull luller lulu lunn lunt lunule luo
lupe lupis lupulus lupus lur lure lurer lush lushly lust
lustrous lut lye nul null nun nupe nurture nurturer nut
oer ore ort ouphish our oust out outpeep outpeer outpipe
outpull outpush output outre outrun outrush outspell outspue outspurn outspurt
outstrut outstunt outsulk outturn outusure oyer pee peek peel peele
peeler peeoy peep peeper peepeye peer pele peleus pell peller
pelu pep peplus pepper pepperer pepsis per pern pert pertussis
peru perule perun peul phi pip pipe piper pipi pipistrel
pipistrelle pipistrellus pipper pish piss pist plup plus plush ply
plyer psi pst puerer pul pule puler pulk pull puller
pulley pullus pulp pulper pulu puly pun punt pup puppis
pur pure puree purely purer purr purre purree purrel purrer
puru purupuru pus push puss pustule put putt puture ree
reek reeker reeky reel reeler reeper rel rely reoutput rep
repel repeller repipe reply repp reps reree rereel rerun reuel
roe roer roey roue rouelle roun roup rouper roust rout
roy rue ruelle ruer rule ruler rull ruller run runt
rupee rupert rupture ruru rus rush russ rust rustre rut
shi shih ship shipper shish shlu sip sipe siper sipper
sis sish sisi siss sissu sist sistrurus speel speer spelk
spell speller splurt spun spur spurn spurrer spurt sput ssi
ssu stre stree streek streel streeler streep streke streperous strepsis
strey stroup stroy stroyer strue strunt strut stu stue stull
stuller stun stunt stupe stupeous stupp sturnus sturt stuss stut
sue suer suerre suld sulk sulker sulky sull sully sulu
sun sunn sunt sunup sup supe super superoutput supper supple
supplely supply sur sure surely surrey sus susi susu susurr
susurrous susurrus sutu suture suu tree treey trek trekker trey
troupe trouper trout troy true truer trull truller truly trun
trush truss trust tshi tst tsun tsutsutsi tue tule tulle
tulu tun tunu tup tupek tupi tur turn turnup turr
turus tush tussis tussur tut tuts tutu tutulus ule ull
uller ulu ululu unreel unrule unruly unrun unrust untrue untruly
untruss untrust unturn unurn upper upperer uppish uppishly uppull uppush
upspurt upsun upsup uptree uptruss upturn ure urn uro uru
urus urushi ush ust usun usure usurer utu yee yeel
yeld yelk yell yeller yelp yelper yeo yep yer yere
yern yoe yor yore you youl youp your yourn yoy
注意: 我在这个线程的开头使用了字典和字符矩阵。该代码是在我的 MacBookPro 上运行的,下面是有关该机器的一些信息。
型号名称:MacBook Pro 型号标识符:MacBookPro8,1 处理器名称:英特尔酷睿 i5 处理器速度:2.3 GHz 处理器数量:1 核心总数:2 L2 缓存(每个核心):256 KB L3 缓存:3 MB 内存:4 GB 引导ROM版本:MBP81.0047.B0E SMC 版本(系统):1.68f96
【讨论】:
【参考方案28】:我也用 Java 解决了这个问题。我的实现有 269 行长,而且很容易使用。首先,您需要创建 Boggler 类的新实例,然后使用网格作为参数调用求解函数。在我的计算机上加载包含 50 000 个单词的词典大约需要 100 毫秒,它在大约 10-20 毫秒内找到单词。找到的单词存储在一个 ArrayList 中,foundWords
。
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URISyntaxException;
import java.net.URL;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
public class Boggler
private ArrayList<String> words = new ArrayList<String>();
private ArrayList<String> roundWords = new ArrayList<String>();
private ArrayList<Word> foundWords = new ArrayList<Word>();
private char[][] letterGrid = new char[4][4];
private String letters;
public Boggler() throws FileNotFoundException, IOException, URISyntaxException
long startTime = System.currentTimeMillis();
URL path = GUI.class.getResource("words.txt");
BufferedReader br = new BufferedReader(new InputStreamReader(new FileInputStream(new File(path.toURI()).getAbsolutePath()), "iso-8859-1"));
String line;
while((line = br.readLine()) != null)
if(line.length() < 3 || line.length() > 10)
continue;
this.words.add(line);
public ArrayList<Word> getWords()
return this.foundWords;
public void solve(String letters)
this.letters = "";
this.foundWords = new ArrayList<Word>();
for(int i = 0; i < letters.length(); i++)
if(!this.letters.contains(letters.substring(i, i + 1)))
this.letters += letters.substring(i, i + 1);
for(int i = 0; i < 4; i++)
for(int j = 0; j < 4; j++)
this.letterGrid[i][j] = letters.charAt(i * 4 + j);
System.out.println(Arrays.deepToString(this.letterGrid));
this.roundWords = new ArrayList<String>();
String pattern = "[" + this.letters + "]+";
for(int i = 0; i < this.words.size(); i++)
if(this.words.get(i).matches(pattern))
this.roundWords.add(this.words.get(i));
for(int i = 0; i < this.roundWords.size(); i++)
Word word = checkForWord(this.roundWords.get(i));
if(word != null)
System.out.println(word);
this.foundWords.add(word);
private Word checkForWord(String word)
char initial = word.charAt(0);
ArrayList<LetterCoord> startPoints = new ArrayList<LetterCoord>();
int x = 0;
int y = 0;
for(char[] row: this.letterGrid)
x = 0;
for(char letter: row)
if(initial == letter)
startPoints.add(new LetterCoord(x, y));
x++;
y++;
ArrayList<LetterCoord> letterCoords = null;
for(int initialTry = 0; initialTry < startPoints.size(); initialTry++)
letterCoords = new ArrayList<LetterCoord>();
x = startPoints.get(initialTry).getX();
y = startPoints.get(initialTry).getY();
LetterCoord initialCoord = new LetterCoord(x, y);
letterCoords.add(initialCoord);
letterLoop: for(int letterIndex = 1; letterIndex < word.length(); letterIndex++)
LetterCoord lastCoord = letterCoords.get(letterCoords.size() - 1);
char currentChar = word.charAt(letterIndex);
ArrayList<LetterCoord> letterLocations = getNeighbours(currentChar, lastCoord.getX(), lastCoord.getY());
if(letterLocations == null)
return null;
for(int foundIndex = 0; foundIndex < letterLocations.size(); foundIndex++)
if(letterIndex != word.length() - 1 && true == false)
char nextChar = word.charAt(letterIndex + 1);
int lastX = letterCoords.get(letterCoords.size() - 1).getX();
int lastY = letterCoords.get(letterCoords.size() - 1).getY();
ArrayList<LetterCoord> possibleIndex = getNeighbours(nextChar, lastX, lastY);
if(possibleIndex != null)
if(!letterCoords.contains(letterLocations.get(foundIndex)))
letterCoords.add(letterLocations.get(foundIndex));
continue letterLoop;
else
return null;
else
if(!letterCoords.contains(letterLocations.get(foundIndex)))
letterCoords.add(letterLocations.get(foundIndex));
continue letterLoop;
if(letterCoords != null)
if(letterCoords.size() == word.length())
Word w = new Word(word);
w.addList(letterCoords);
return w;
else
return null;
if(letterCoords != null)
Word foundWord = new Word(word);
foundWord.addList(letterCoords);
return foundWord;
return null;
public ArrayList<LetterCoord> getNeighbours(char letterToSearch, int x, int y)
ArrayList<LetterCoord> neighbours = new ArrayList<LetterCoord>();
for(int _y = y - 1; _y <= y + 1; _y++)
for(int _x = x - 1; _x <= x + 1; _x++)
if(_x < 0 || _y < 0 || (_x == x && _y == y) || _y > 3 || _x > 3)
continue;
if(this.letterGrid[_y][_x] == letterToSearch && !neighbours.contains(new LetterCoord(_x, _y)))
neighbours.add(new LetterCoord(_x, _y));
if(neighbours.isEmpty())
return null;
else
return neighbours;
class Word
private String word;
private ArrayList<LetterCoord> letterCoords = new ArrayList<LetterCoord>();
public Word(String word)
this.word = word;
public boolean addCoords(int x, int y)
LetterCoord lc = new LetterCoord(x, y);
if(!this.letterCoords.contains(lc))
this.letterCoords.add(lc);
return true;
return false;
public void addList(ArrayList<LetterCoord> letterCoords)
this.letterCoords = letterCoords;
@Override
public String toString()
String outputString = this.word + " ";
for(int i = 0; i < letterCoords.size(); i++)
outputString += "(" + letterCoords.get(i).getX() + ", " + letterCoords.get(i).getY() + ") ";
return outputString;
public String getWord()
return this.word;
public ArrayList<LetterCoord> getList()
return this.letterCoords;
class LetterCoord extends ArrayList
private int x;
private int y;
public LetterCoord(int x, int y)
this.x = x;
this.y = y;
public int getX()
return this.x;
public int getY()
return this.y;
@Override
public boolean equals(Object o)
if(!(o instanceof LetterCoord))
return false;
LetterCoord lc = (LetterCoord) o;
if(this.x == lc.getX() &&
this.y == lc.getY())
return true;
return false;
@Override
public int hashCode()
int hash = 7;
hash = 29 * hash + this.x;
hash = 24 * hash + this.y;
return hash;
【讨论】:
【参考方案29】:我在 c 中解决了这个问题。在我的机器上运行大约需要 48 毫秒(大约 98% 的时间用于从磁盘加载字典和创建 trie)。字典是 /usr/share/dict/american-english,有 62886 个单词。
Source code
【讨论】:
【参考方案30】:我非常快速地完美解决了这个问题。我把它放到一个安卓应用程序中。在 Play 商店链接中查看视频以查看它的实际效果。
Word Cheats 是一款可以“破解”任何矩阵式文字游戏的应用。这个应用程序是建立的 来帮助我在单词扰频器上作弊。它可以用于单词搜索, ruzzle、单词、单词查找器、单词破解、boggle 等等!
这里可以看到 https://play.google.com/store/apps/details?id=com.harris.wordcracker
在视频中查看正在运行的应用 https://www.youtube.com/watch?v=DL2974WmNAI
【讨论】:
以上是关于如何从字母矩阵中找到可能的单词列表 [Boggle Solver]的主要内容,如果未能解决你的问题,请参考以下文章