Plotly:在散点图分类轴上躲避重叠点

Posted

技术标签:

【中文标题】Plotly:在散点图分类轴上躲避重叠点【英文标题】:Plotly: Dodge overlapping points on scatterplot categorical axis 【发布时间】:2020-11-06 04:30:49 【问题描述】:

我正在尝试使用 plotly 来比较回归模型的系数,使用误差条作为置信区间。我使用下面的代码来绘制它,使用变量作为散点图中的分类y 轴。问题是这些点是重叠的,我想像设置barmode='group' 时在条形图中发生的那样避开它们。如果我有一个数字轴,我可以手动躲避它们,但我做不到。

fig = px.scatter(
        df, y='index', x='coef', text='label', color='model',
        error_x_minus='lerr', error_x='uerr',
        hover_data=['coef', 'pvalue', 'lower', 'upper']
    )
fig.update_traces(textposition='top center')
fig.update_yaxes(autorange="reversed")

使用构面,我几乎得到了我想要的结果,但有些标签偏离了情节并且不可见:

fig = px.scatter(
    df, y='model', x='coef', text='label', color='model',
    facet_row='index',
    error_x_minus='lerr', error_x='uerr',
    hover_data=['coef', 'pvalue', 'lower', 'upper']
)
fig.update_traces(textposition='top center')
fig.update_yaxes(visible=False)
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))

有人对在第一种情况下躲避点或在第二种情况下显示标签有任何想法或解决方法吗?

提前致谢。

PS:这是我为生成图而制作的随机假数据框:

df = pd.DataFrame('coef': 0: 1.0018729737113143,
  1: 0.9408864645423858,
  2: 0.29796556981484884,
  3: -0.6844053575764955,
  4: -0.13689631932690113,
  5: 0.1473096200402363,
  6: 0.9564712505670716,
  7: 0.956099003887811,
  8: 0.33319108930207175,
  9: -0.7022778825729681,
  10: -0.1773916842612131,
  11: 0.09485417304851751,
 'index': 0: 'const',
  1: 'x1',
  2: 'x2',
  3: 'x3',
  4: 'x4',
  5: 'x5',
  6: 'const',
  7: 'x1',
  8: 'x2',
  9: 'x3',
  10: 'x4',
  11: 'x5',
 'label': 0: '1.002***',
  1: '0.941***',
  2: '0.298***',
  3: '-0.684***',
  4: '-0.137',
  5: '0.147',
  6: '0.956***',
  7: '0.956***',
  8: '0.333***',
  9: '-0.702***',
  10: '-0.177',
  11: '0.095',
 'lerr': 0: 0.19788416996400904,
  1: 0.19972987383410545,
  2: 0.0606849959013587,
  3: 0.1772734289533593,
  4: 0.1988122854078155,
  5: 0.21870366703236832,
  6: 0.2734783191688098,
  7: 0.2760291042678362,
  8: 0.08386739920069491,
  9: 0.2449940255063039,
  10: 0.27476098595116555,
  11: 0.3022511162310027,
 'lower': 0: 0.8039888037473053,
  1: 0.7411565907082803,
  2: 0.23728057391349014,
  3: -0.8616787865298547,
  4: -0.33570860473471664,
  5: -0.07139404699213203,
  6: 0.6829929313982618,
  7: 0.6800698996199748,
  8: 0.24932369010137684,
  9: -0.947271908079272,
  10: -0.45215267021237865,
  11: -0.2073969431824852,
 'model': 0: 'OLS',
  1: 'OLS',
  2: 'OLS',
  3: 'OLS',
  4: 'OLS',
  5: 'OLS',
  6: 'QuantReg',
  7: 'QuantReg',
  8: 'QuantReg',
  9: 'QuantReg',
  10: 'QuantReg',
  11: 'QuantReg',
 'pvalue': 0: 1.4211692095019375e-16,
  1: 4.3583690618389965e-15,
  2: 6.278403727223468e-16,
  3: 1.596372747840846e-11,
  4: 0.17483151363955116,
  5: 0.18433051296752084,
  6: 4.877385844808361e-10,
  7: 6.665860891682504e-10,
  8: 5.476882838731488e-12,
  9: 1.4240852942202845e-07,
  10: 0.20303143985022934,
  11: 0.5347222575215599,
 'uerr': 0: 0.19788416996400904,
  1: 0.19972987383410556,
  2: 0.06068499590135873,
  3: 0.1772734289533593,
  4: 0.19881228540781554,
  5: 0.21870366703236832,
  6: 0.27347831916880994,
  7: 0.2760291042678362,
  8: 0.08386739920069491,
  9: 0.2449940255063039,
  10: 0.27476098595116555,
  11: 0.3022511162310027,
 'upper': 0: 1.1997571436753234,
  1: 1.1406163383764913,
  2: 0.35865056571620757,
  3: -0.5071319286231362,
  4: 0.0619159660809144,
  5: 0.3660132870726046,
  6: 1.2299495697358815,
  7: 1.2321281081556472,
  8: 0.41705848850276667,
  9: -0.4572838570666642,
  10: 0.09736930168995245,
  11: 0.3971052892795202)

【问题讨论】:

【参考方案1】:

您的第二次尝试非常接近可行的解决方案。只需为您的标签腾出更多空间:

height=600, width=800

然后将名为'OLS' 的轨迹的标签放置在每个子图的边界内:

fig.for_each_trace(lambda t: t.update(textposition='bottom center') if t.name == 'OLS' else ())

剧情:

完整代码:

import plotly.express as px
import pandas as pd

df = pd.DataFrame('coef': 0: 1.0018729737113143,
  1: 0.9408864645423858,
  2: 0.29796556981484884,
  3: -0.6844053575764955,
  4: -0.13689631932690113,
  5: 0.1473096200402363,
  6: 0.9564712505670716,
  7: 0.956099003887811,
  8: 0.33319108930207175,
  9: -0.7022778825729681,
  10: -0.1773916842612131,
  11: 0.09485417304851751,
 'index': 0: 'const',
  1: 'x1',
  2: 'x2',
  3: 'x3',
  4: 'x4',
  5: 'x5',
  6: 'const',
  7: 'x1',
  8: 'x2',
  9: 'x3',
  10: 'x4',
  11: 'x5',
 'label': 0: '1.002***',
  1: '0.941***',
  2: '0.298***',
  3: '-0.684***',
  4: '-0.137',
  5: '0.147',
  6: '0.956***',
  7: '0.956***',
  8: '0.333***',
  9: '-0.702***',
  10: '-0.177',
  11: '0.095',
 'lerr': 0: 0.19788416996400904,
  1: 0.19972987383410545,
  2: 0.0606849959013587,
  3: 0.1772734289533593,
  4: 0.1988122854078155,
  5: 0.21870366703236832,
  6: 0.2734783191688098,
  7: 0.2760291042678362,
  8: 0.08386739920069491,
  9: 0.2449940255063039,
  10: 0.27476098595116555,
  11: 0.3022511162310027,
 'lower': 0: 0.8039888037473053,
  1: 0.7411565907082803,
  2: 0.23728057391349014,
  3: -0.8616787865298547,
  4: -0.33570860473471664,
  5: -0.07139404699213203,
  6: 0.6829929313982618,
  7: 0.6800698996199748,
  8: 0.24932369010137684,
  9: -0.947271908079272,
  10: -0.45215267021237865,
  11: -0.2073969431824852,
 'model': 0: 'OLS',
  1: 'OLS',
  2: 'OLS',
  3: 'OLS',
  4: 'OLS',
  5: 'OLS',
  6: 'QuantReg',
  7: 'QuantReg',
  8: 'QuantReg',
  9: 'QuantReg',
  10: 'QuantReg',
  11: 'QuantReg',
 'pvalue': 0: 1.4211692095019375e-16,
  1: 4.3583690618389965e-15,
  2: 6.278403727223468e-16,
  3: 1.596372747840846e-11,
  4: 0.17483151363955116,
  5: 0.18433051296752084,
  6: 4.877385844808361e-10,
  7: 6.665860891682504e-10,
  8: 5.476882838731488e-12,
  9: 1.4240852942202845e-07,
  10: 0.20303143985022934,
  11: 0.5347222575215599,
 'uerr': 0: 0.19788416996400904,
  1: 0.19972987383410556,
  2: 0.06068499590135873,
  3: 0.1772734289533593,
  4: 0.19881228540781554,
  5: 0.21870366703236832,
  6: 0.27347831916880994,
  7: 0.2760291042678362,
  8: 0.08386739920069491,
  9: 0.2449940255063039,
  10: 0.27476098595116555,
  11: 0.3022511162310027,
 'upper': 0: 1.1997571436753234,
  1: 1.1406163383764913,
  2: 0.35865056571620757,
  3: -0.5071319286231362,
  4: 0.0619159660809144,
  5: 0.3660132870726046,
  6: 1.2299495697358815,
  7: 1.2321281081556472,
  8: 0.41705848850276667,
  9: -0.4572838570666642,
  10: 0.09736930168995245,
  11: 0.3971052892795202)

fig = px.scatter(
    df, y='model', x='coef', text='label', color='model',
    facet_row='index',
    error_x_minus='lerr', error_x='uerr',
    hover_data=['coef', 'pvalue', 'lower', 'upper'],
    height=600, width=800,
)
fig.update_traces(textposition='top center')
fig.update_yaxes(visible=False)
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))

fig.for_each_trace(lambda t: t.update(textposition='bottom center') if t.name == 'OLS' else ())

fig.show()

【讨论】:

以上是关于Plotly:在散点图分类轴上躲避重叠点的主要内容,如果未能解决你的问题,请参考以下文章

Plotly 散点图趋势线出现在散点下方。如何让趋势线出现在散点图上? [Python]

[散点图][Plotly][Python] 如何在散点图中标记心形

使用 matplotlib 向箱线图添加点散点图

Plotly:分类散点图格式

python - 如何使用plotly python中的下拉按钮更新多个散点图的数据?

如何避免在散点图中重叠文本?