使用 DataFrame API 时,自联接无法按预期工作

Posted

技术标签:

【中文标题】使用 DataFrame API 时,自联接无法按预期工作【英文标题】:Self-join not working as expected with the DataFrame API 【发布时间】:2017-10-31 07:42:28 【问题描述】:

我正在尝试使用自联接从表中获取最新记录。它可以使用 spark-sql 工作,但不能使用 spark DataFrame API 工作。

有人可以帮忙吗?是bug吗?

我在本地模式下使用 Spark 2.2.0

创建输入DataFrame:

scala> val df3 = spark.sparkContext.parallelize(Array((1,"a",1),(1,"aa",2),(2,"b",2),(2,"bb",5))).toDF("id","value","time")
df3: org.apache.spark.sql.DataFrame = [id: int, value: string ... 1 more field]    

scala> val df33 = df3
df33: org.apache.spark.sql.DataFrame = [id: int, value: string ... 1 more field]

scala> df3.show
+---+-----+----+
| id|value|time|
+---+-----+----+
|  1|    a|   1|
|  1|   aa|   2|
|  2|    b|   2|
|  2|   bb|   5|
+---+-----+----+

scala> df33.show
+---+-----+----+
| id|value|time|
+---+-----+----+
|  1|    a|   1|
|  1|   aa|   2|
|  2|    b|   2|
|  2|   bb|   5|
+---+-----+----+

现在使用 SQL 执行连接:works

scala> spark.sql("select df33.* from df3 join df33 on df3.id = df33.id and df3.time < df33.time").show
+---+-----+----+
| id|value|time|
+---+-----+----+
|  1|   aa|   2|
|  2|   bb|   5|
+---+-----+----+

现在使用数据框 API 执行连接:不起作用

scala> df3.join(df33, (df3.col("id") === df33.col("id")) && (df3.col("time") < df33.col("time")) ).select(df33.col("id"),df33.col("value"),df33.col("time")).show
+---+-----+----+
| id|value|time|
+---+-----+----+
+---+-----+----+

需要注意的是解释计划:DataFrame API 的空白!!

scala> df3.join(df33, (df3.col("id") === df33.col("id")) && (df3.col("time") < df33.col("time")) ).select(df33.col("id"),df33.col("value"),df33.col("time")).explain
== Physical Plan ==
LocalTableScan <empty>, [id#150, value#151, time#152]

scala> spark.sql("select df33.* from df3 join df33 on df3.id = df33.id and df3.time < df33.time").explain
== Physical Plan ==
*Project [id#1241, value#1242, time#1243]
+- *SortMergeJoin [id#150], [id#1241], Inner, (time#152 < time#1243)
   :- *Sort [id#150 ASC NULLS FIRST], false, 0
   :  +- Exchange hashpartitioning(id#150, 200)
   :     +- *Project [_1#146 AS id#150, _3#148 AS time#152]
   :        +- *SerializeFromObject [assertnotnull(input[0, scala.Tuple3, true])._1 AS _1#146, staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString,
assertnotnull(input[0, scala.Tuple3, true])._2, true) AS _2#147, assertnotnull(input[0, scala.Tuple3, true])._3 AS _3#148]
   :           +- Scan ExternalRDDScan[obj#145]
   +- *Sort [id#1241 ASC NULLS FIRST], false, 0
      +- Exchange hashpartitioning(id#1241, 200)
         +- *Project [_1#146 AS id#1241, _2#147 AS value#1242, _3#148 AS time#1243]
            +- *SerializeFromObject [assertnotnull(input[0, scala.Tuple3, true])._1 AS _1#146, staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString,
assertnotnull(input[0, scala.Tuple3, true])._2, true) AS _2#147, assertnotnull(input[0, scala.Tuple3, true])._3 AS _3#148]
               +- Scan ExternalRDDScan[obj#145]

【问题讨论】:

【参考方案1】:

不,这不是错误,但是当您像您所做的那样将 DataFrame 重新分配给一个新的时,它实际上会复制沿袭,但不会复制数据。因此,您将在同一列上进行比较。

使用 spark.sql 略有不同,因为它实际上是在处理您的 DataFrames 的别名

因此,使用 API 执行自联接的正确方法实际上是 别名您的 DataFrame,如下所示:

val df1 = Seq((1,"a",1),(1,"aa",2),(2,"b",2),(2,"bb",5)).toDF("id","value","time")

df1.as("df1").join(df1.as("df2"), $"df1.id" === $"df2.id" && $"df1.time" < $"df2.time").select($"df2.*").show
// +---+-----+----+
// | id|value|time|
// +---+-----+----+
// |  1|   aa|   2|
// |  2|   bb|   5|
// +---+-----+----+

有关自联接的更多信息,我建议阅读High Performance Spark by Rachel Warren, Holden Karau - Chapter 4。

【讨论】:

以上是关于使用 DataFrame API 时,自联接无法按预期工作的主要内容,如果未能解决你的问题,请参考以下文章

使用 JoinTable 的 JPA 自联接

有没有办法改变这个 BigQuery 自联接以使用窗口函数?

了解在 SQL 查询的自联接中使用“Between”条件时的逻辑查询处理

当日期和 doc_Types 相等时对表执行自联接

Spring Boot JPA:在自联接关系中的 JSON 视图上递归

SQLAlchemy:在 MySQL 上使用自联接创建删除查询