为啥在大 IN 条件下投射到地理更快?

Posted

技术标签:

【中文标题】为啥在大 IN 条件下投射到地理更快?【英文标题】:Why casting to geography is faster when there are big IN condition?为什么在大 IN 条件下投射到地理更快? 【发布时间】:2020-12-22 19:45:03 【问题描述】:

我使用的是 AWS aurora postgresql 兼容的。 postgresql 版本是 11.7,postgis 版本是 2.5

我有vehiclevehicle_current_status 表。

vehicle 表有近 4000 行。

vehicle 表的id 列是自增主键。

vehicle_current_status 表与vehicle 表具有一对一的关系。

vehicle_current_status 表的id 列是自增主键。

vehicle_current_status 表的 coordinate 列是 SRID 4326 的几何。我没有在 coordinate 列上使用索引,因为更新坐标查询执行了很多。

有2845个条目的大IN条件。

查询 1(没有类型转换)

SELECT "v"."id" AS "v_id"
FROM "vehicle" "v"
LEFT JOIN "vehicle_current_status" "vs" ON "vs"."vehicle_id" = "v"."id"
WHERE
    ST_DWITHIN(
        "vs"."coordinate",
        ST_SETSRID(
            ST_GEOMFROMGEOJSON('"type": "Point", "coordinates": [127.03,37.509]'),
            4326),
        0.017)
    AND "v"."id" IN (VALUES(1023),(1006),(3674),(1692)... 2845 entries)
    AND "v".IS_ACTIVE IS TRUE
    AND "vs".BATTERY_PERCENTAGE > 30

查询 1 解释

"Nested Loop Semi Join  (cost=0.28..12330.99 rows=2 width=4) (actual time=1.118..83.764 rows=121 loops=1)"
"  Join Filter: (vs.vehicle_id = ""*VALUES*"".column1)"
"  Rows Removed by Join Filter: 578765"
"  Buffers: shared hit=11846"
"  ->  Nested Loop  (cost=0.28..12160.29 rows=3 width=8) (actual time=0.028..9.577 rows=250 loops=1)"
"        Buffers: shared hit=11846"
"        ->  Seq Scan on vehicle_current_status vs  (cost=0.00..12135.39 rows=3 width=4) (actual time=0.017..8.799 rows=250 loops=1)"
"              Filter: ((coordinate && '0103000020E6100000010000000500000046B6F3FDD4C05F40E5D022DBF9BE424046B6F3FDD4C05F4017D9CEF753C342405EBA490C02C35F4017D9CEF753C342405EBA490C02C35F40E5D022DBF9BE424046B6F3FDD4C05F40E5D022DBF9BE4240'::geometry) AND (battery_percentage > 30) AND ('0101000020E610000052B81E85EBC15F40FED478E926C14240'::geometry && st_expand(coordinate, '0.017'::double precision)) AND _st_dwithin(coordinate, '0101000020E610000052B81E85EBC15F40FED478E926C14240'::geometry, '0.017'::double precision))"
"              Rows Removed by Filter: 3607"
"              Buffers: shared hit=11094"
"        ->  Index Scan using ""PK_187fa17ba39d367e5604b3d1ec9"" on vehicle v  (cost=0.28..8.30 rows=1 width=4) (actual time=0.002..0.002 rows=1 loops=250)"
"              Index Cond: (id = vs.vehicle_id)"
"              Filter: (is_active IS TRUE)"
"              Buffers: shared hit=752"
"  ->  Materialize  (cost=0.00..49.79 rows=2845 width=4) (actual time=0.000..0.131 rows=2316 loops=250)"
"        ->  Values Scan on ""*VALUES*""  (cost=0.00..35.56 rows=2845 width=4) (actual time=0.001..0.533 rows=2845 loops=1)"
"Planning Time: 2.045 ms"
"Execution Time: 83.853 ms"

查询 2(类型转换为地理)

SELECT "v"."id" AS "v_id"
FROM "vehicle" "v"
LEFT JOIN "vehicle_current_status" "vs" ON "vs"."vehicle_id" = "v"."id"
WHERE
    ST_DWITHIN(
        "vs"."coordinate"::geography,
        ST_SETSRID(
            ST_GEOMFROMGEOJSON('"type": "Point", "coordinates": [127.03,37.509]'),
            4326)::geography,
        1800, false)
    AND "v"."id" IN (VALUES(1023),(1006),(3674),(1692)... 2845 entries)
    AND "v".IS_ACTIVE IS TRUE
    AND "vs".BATTERY_PERCENTAGE > 30

查询 2 解释

"Nested Loop  (cost=106.97..12760.97 rows=35 width=4) (actual time=1.988..13.254 rows=123 loops=1)"
"  Join Filter: (vs.vehicle_id = v.id)"
"  Buffers: shared hit=11466"
"  ->  Hash Join  (cost=106.69..12744.01 rows=35 width=8) (actual time=1.977..12.937 rows=123 loops=1)"
"        Hash Cond: (vs.vehicle_id = ""*VALUES*"".column1)"
"        Buffers: shared hit=11097"
"        ->  Seq Scan on vehicle_current_status vs  (cost=0.00..12636.80 rows=47 width=4) (actual time=0.145..11.040 rows=253 loops=1)"
"              Filter: ((battery_percentage > 30) AND ((coordinate)::geography && '0101000020E610000052B81E85EBC15F40FED478E926C14240'::geography) AND ('0101000020E610000052B81E85EBC15F40FED478E926C14240'::geography && _st_expand((coordinate)::geography, '1800'::double precision)) AND _st_dwithin((coordinate)::geography, '0101000020E610000052B81E85EBC15F40FED478E926C14240'::geography, '1800'::double precision, true))"
"              Rows Removed by Filter: 3604"
"              Buffers: shared hit=11097"
"        ->  Hash  (cost=71.12..71.12 rows=2845 width=4) (actual time=1.809..1.809 rows=2845 loops=1)"
"              Buckets: 4096  Batches: 1  Memory Usage: 133kB"
"              ->  HashAggregate  (cost=42.67..71.12 rows=2845 width=4) (actual time=1.071..1.392 rows=2845 loops=1)"
"                    Group Key: ""*VALUES*"".column1"
"                    ->  Values Scan on ""*VALUES*""  (cost=0.00..35.56 rows=2845 width=4) (actual time=0.001..0.532 rows=2845 loops=1)"
"  ->  Index Scan using ""PK_187fa17ba39d367e5604b3d1ec9"" on vehicle v  (cost=0.28..0.47 rows=1 width=4) (actual time=0.002..0.002 rows=1 loops=123)"
"        Index Cond: (id = ""*VALUES*"".column1)"
"        Filter: (is_active IS TRUE)"
"        Buffers: shared hit=369"
"Planning Time: 2.274 ms"
"Execution Time: 13.380 ms"

这很奇怪。 为什么投射到地理位置更快?

如果我删除大 IN 条件 "v"."id" IN (VALUES...),则查询 1 比查询 2 更快。

查询 1 解释(无类型转换,删除大 IN 条件)

"Nested Loop  (cost=0.28..12531.73 rows=4 width=4) (actual time=0.023..9.378 rows=250 loops=1)"
"  Buffers: shared hit=11846"
"  ->  Seq Scan on vehicle_current_status vs  (cost=0.00..12498.54 rows=4 width=4) (actual time=0.013..8.744 rows=250 loops=1)"
"        Filter: ((coordinate && '0103000020E6100000010000000500000046B6F3FDD4C05F40E5D022DBF9BE424046B6F3FDD4C05F4017D9CEF753C342405EBA490C02C35F4017D9CEF753C342405EBA490C02C35F40E5D022DBF9BE424046B6F3FDD4C05F40E5D022DBF9BE4240'::geometry) AND (battery_percentage > 30) AND ('0101000020E610000052B81E85EBC15F40FED478E926C14240'::geometry && st_expand(coordinate, '0.017'::double precision)) AND _st_dwithin(coordinate, '0101000020E610000052B81E85EBC15F40FED478E926C14240'::geometry, '0.017'::double precision))"
"        Rows Removed by Filter: 3607"
"        Buffers: shared hit=11094"
"  ->  Index Scan using ""PK_187fa17ba39d367e5604b3d1ec9"" on vehicle v  (cost=0.28..8.30 rows=1 width=4) (actual time=0.002..0.002 rows=1 loops=250)"
"        Index Cond: (id = vs.vehicle_id)"
"        Filter: (is_active IS TRUE)"
"        Buffers: shared hit=752"
"Planning Time: 0.347 ms"
"Execution Time: 9.415 ms"

查询 2 解释(将类型转换为地理,删除大 IN 条件)

"Nested Loop  (cost=0.28..12886.79 rows=47 width=4) (actual time=0.122..13.833 rows=253 loops=1)"
"  Buffers: shared hit=11858"
"  ->  Seq Scan on vehicle_current_status vs  (cost=0.00..12636.80 rows=47 width=4) (actual time=0.114..13.037 rows=253 loops=1)"
"        Filter: ((battery_percentage > 30) AND ((coordinate)::geography && '0101000020E610000052B81E85EBC15F40FED478E926C14240'::geography) AND ('0101000020E610000052B81E85EBC15F40FED478E926C14240'::geography && _st_expand((coordinate)::geography, '1800'::double precision)) AND _st_dwithin((coordinate)::geography, '0101000020E610000052B81E85EBC15F40FED478E926C14240'::geography, '1800'::double precision, true))"
"        Rows Removed by Filter: 3604"
"        Buffers: shared hit=11097"
"  ->  Index Scan using ""PK_187fa17ba39d367e5604b3d1ec9"" on vehicle v  (cost=0.28..5.32 rows=1 width=4) (actual time=0.002..0.002 rows=1 loops=253)"
"        Index Cond: (id = vs.vehicle_id)"
"        Filter: (is_active IS TRUE)"
"        Buffers: shared hit=761"
"Planning Time: 0.348 ms"
"Execution Time: 13.880 ms"

为什么在大 IN 条件下投射到地理位置会更快?

【问题讨论】:

【参考方案1】:

当它认为只需要在列表中搜索 3 次时,似乎不值得将其预处理为哈希表。结果证明这是一个错误,因为它实际上需要搜索 250 次。

当你施放它时,它会认为它必须在列表中搜索 47 次。这虽然仍然是错误的,但更接近现实,并导致更好的计划。

为什么强制转换会给出不同的行估计值?不知道。也许几何与地理?如果您想研究这一点,您应该简化查询以摆脱连接和battery_percentage 的标准,只关注空间方面。

【讨论】:

以上是关于为啥在大 IN 条件下投射到地理更快?的主要内容,如果未能解决你的问题,请参考以下文章

在某些条件下更快地复制 pandas 数据

Oracle的IN vs OR,哪个更快?

如何将 IN 条件转换为 INNER JOIN 条件 - 加入速度较慢

为啥我不能在某些特定情况下将父母投射到孩子身上

为啥我的光线投射会击中错误的对象?

mysql查询in为啥用不上索引