为啥在大 IN 条件下投射到地理更快?
Posted
技术标签:
【中文标题】为啥在大 IN 条件下投射到地理更快?【英文标题】:Why casting to geography is faster when there are big IN condition?为什么在大 IN 条件下投射到地理更快? 【发布时间】:2020-12-22 19:45:03 【问题描述】:我使用的是 AWS aurora postgresql 兼容的。 postgresql 版本是 11.7,postgis 版本是 2.5
我有vehicle
和vehicle_current_status
表。
vehicle
表有近 4000 行。
vehicle
表的id
列是自增主键。
vehicle_current_status
表与vehicle
表具有一对一的关系。
vehicle_current_status
表的id
列是自增主键。
vehicle_current_status
表的 coordinate
列是 SRID 4326 的几何。我没有在 coordinate
列上使用索引,因为更新坐标查询执行了很多。
有2845个条目的大IN条件。
查询 1(没有类型转换)
SELECT "v"."id" AS "v_id"
FROM "vehicle" "v"
LEFT JOIN "vehicle_current_status" "vs" ON "vs"."vehicle_id" = "v"."id"
WHERE
ST_DWITHIN(
"vs"."coordinate",
ST_SETSRID(
ST_GEOMFROMGEOJSON('"type": "Point", "coordinates": [127.03,37.509]'),
4326),
0.017)
AND "v"."id" IN (VALUES(1023),(1006),(3674),(1692)... 2845 entries)
AND "v".IS_ACTIVE IS TRUE
AND "vs".BATTERY_PERCENTAGE > 30
查询 1 解释
"Nested Loop Semi Join (cost=0.28..12330.99 rows=2 width=4) (actual time=1.118..83.764 rows=121 loops=1)"
" Join Filter: (vs.vehicle_id = ""*VALUES*"".column1)"
" Rows Removed by Join Filter: 578765"
" Buffers: shared hit=11846"
" -> Nested Loop (cost=0.28..12160.29 rows=3 width=8) (actual time=0.028..9.577 rows=250 loops=1)"
" Buffers: shared hit=11846"
" -> Seq Scan on vehicle_current_status vs (cost=0.00..12135.39 rows=3 width=4) (actual time=0.017..8.799 rows=250 loops=1)"
" Filter: ((coordinate && '0103000020E6100000010000000500000046B6F3FDD4C05F40E5D022DBF9BE424046B6F3FDD4C05F4017D9CEF753C342405EBA490C02C35F4017D9CEF753C342405EBA490C02C35F40E5D022DBF9BE424046B6F3FDD4C05F40E5D022DBF9BE4240'::geometry) AND (battery_percentage > 30) AND ('0101000020E610000052B81E85EBC15F40FED478E926C14240'::geometry && st_expand(coordinate, '0.017'::double precision)) AND _st_dwithin(coordinate, '0101000020E610000052B81E85EBC15F40FED478E926C14240'::geometry, '0.017'::double precision))"
" Rows Removed by Filter: 3607"
" Buffers: shared hit=11094"
" -> Index Scan using ""PK_187fa17ba39d367e5604b3d1ec9"" on vehicle v (cost=0.28..8.30 rows=1 width=4) (actual time=0.002..0.002 rows=1 loops=250)"
" Index Cond: (id = vs.vehicle_id)"
" Filter: (is_active IS TRUE)"
" Buffers: shared hit=752"
" -> Materialize (cost=0.00..49.79 rows=2845 width=4) (actual time=0.000..0.131 rows=2316 loops=250)"
" -> Values Scan on ""*VALUES*"" (cost=0.00..35.56 rows=2845 width=4) (actual time=0.001..0.533 rows=2845 loops=1)"
"Planning Time: 2.045 ms"
"Execution Time: 83.853 ms"
查询 2(类型转换为地理)
SELECT "v"."id" AS "v_id"
FROM "vehicle" "v"
LEFT JOIN "vehicle_current_status" "vs" ON "vs"."vehicle_id" = "v"."id"
WHERE
ST_DWITHIN(
"vs"."coordinate"::geography,
ST_SETSRID(
ST_GEOMFROMGEOJSON('"type": "Point", "coordinates": [127.03,37.509]'),
4326)::geography,
1800, false)
AND "v"."id" IN (VALUES(1023),(1006),(3674),(1692)... 2845 entries)
AND "v".IS_ACTIVE IS TRUE
AND "vs".BATTERY_PERCENTAGE > 30
查询 2 解释
"Nested Loop (cost=106.97..12760.97 rows=35 width=4) (actual time=1.988..13.254 rows=123 loops=1)"
" Join Filter: (vs.vehicle_id = v.id)"
" Buffers: shared hit=11466"
" -> Hash Join (cost=106.69..12744.01 rows=35 width=8) (actual time=1.977..12.937 rows=123 loops=1)"
" Hash Cond: (vs.vehicle_id = ""*VALUES*"".column1)"
" Buffers: shared hit=11097"
" -> Seq Scan on vehicle_current_status vs (cost=0.00..12636.80 rows=47 width=4) (actual time=0.145..11.040 rows=253 loops=1)"
" Filter: ((battery_percentage > 30) AND ((coordinate)::geography && '0101000020E610000052B81E85EBC15F40FED478E926C14240'::geography) AND ('0101000020E610000052B81E85EBC15F40FED478E926C14240'::geography && _st_expand((coordinate)::geography, '1800'::double precision)) AND _st_dwithin((coordinate)::geography, '0101000020E610000052B81E85EBC15F40FED478E926C14240'::geography, '1800'::double precision, true))"
" Rows Removed by Filter: 3604"
" Buffers: shared hit=11097"
" -> Hash (cost=71.12..71.12 rows=2845 width=4) (actual time=1.809..1.809 rows=2845 loops=1)"
" Buckets: 4096 Batches: 1 Memory Usage: 133kB"
" -> HashAggregate (cost=42.67..71.12 rows=2845 width=4) (actual time=1.071..1.392 rows=2845 loops=1)"
" Group Key: ""*VALUES*"".column1"
" -> Values Scan on ""*VALUES*"" (cost=0.00..35.56 rows=2845 width=4) (actual time=0.001..0.532 rows=2845 loops=1)"
" -> Index Scan using ""PK_187fa17ba39d367e5604b3d1ec9"" on vehicle v (cost=0.28..0.47 rows=1 width=4) (actual time=0.002..0.002 rows=1 loops=123)"
" Index Cond: (id = ""*VALUES*"".column1)"
" Filter: (is_active IS TRUE)"
" Buffers: shared hit=369"
"Planning Time: 2.274 ms"
"Execution Time: 13.380 ms"
这很奇怪。 为什么投射到地理位置更快?
如果我删除大 IN 条件 "v"."id" IN (VALUES...)
,则查询 1 比查询 2 更快。
查询 1 解释(无类型转换,删除大 IN 条件)
"Nested Loop (cost=0.28..12531.73 rows=4 width=4) (actual time=0.023..9.378 rows=250 loops=1)"
" Buffers: shared hit=11846"
" -> Seq Scan on vehicle_current_status vs (cost=0.00..12498.54 rows=4 width=4) (actual time=0.013..8.744 rows=250 loops=1)"
" Filter: ((coordinate && '0103000020E6100000010000000500000046B6F3FDD4C05F40E5D022DBF9BE424046B6F3FDD4C05F4017D9CEF753C342405EBA490C02C35F4017D9CEF753C342405EBA490C02C35F40E5D022DBF9BE424046B6F3FDD4C05F40E5D022DBF9BE4240'::geometry) AND (battery_percentage > 30) AND ('0101000020E610000052B81E85EBC15F40FED478E926C14240'::geometry && st_expand(coordinate, '0.017'::double precision)) AND _st_dwithin(coordinate, '0101000020E610000052B81E85EBC15F40FED478E926C14240'::geometry, '0.017'::double precision))"
" Rows Removed by Filter: 3607"
" Buffers: shared hit=11094"
" -> Index Scan using ""PK_187fa17ba39d367e5604b3d1ec9"" on vehicle v (cost=0.28..8.30 rows=1 width=4) (actual time=0.002..0.002 rows=1 loops=250)"
" Index Cond: (id = vs.vehicle_id)"
" Filter: (is_active IS TRUE)"
" Buffers: shared hit=752"
"Planning Time: 0.347 ms"
"Execution Time: 9.415 ms"
查询 2 解释(将类型转换为地理,删除大 IN 条件)
"Nested Loop (cost=0.28..12886.79 rows=47 width=4) (actual time=0.122..13.833 rows=253 loops=1)"
" Buffers: shared hit=11858"
" -> Seq Scan on vehicle_current_status vs (cost=0.00..12636.80 rows=47 width=4) (actual time=0.114..13.037 rows=253 loops=1)"
" Filter: ((battery_percentage > 30) AND ((coordinate)::geography && '0101000020E610000052B81E85EBC15F40FED478E926C14240'::geography) AND ('0101000020E610000052B81E85EBC15F40FED478E926C14240'::geography && _st_expand((coordinate)::geography, '1800'::double precision)) AND _st_dwithin((coordinate)::geography, '0101000020E610000052B81E85EBC15F40FED478E926C14240'::geography, '1800'::double precision, true))"
" Rows Removed by Filter: 3604"
" Buffers: shared hit=11097"
" -> Index Scan using ""PK_187fa17ba39d367e5604b3d1ec9"" on vehicle v (cost=0.28..5.32 rows=1 width=4) (actual time=0.002..0.002 rows=1 loops=253)"
" Index Cond: (id = vs.vehicle_id)"
" Filter: (is_active IS TRUE)"
" Buffers: shared hit=761"
"Planning Time: 0.348 ms"
"Execution Time: 13.880 ms"
为什么在大 IN 条件下投射到地理位置会更快?
【问题讨论】:
【参考方案1】:当它认为只需要在列表中搜索 3 次时,似乎不值得将其预处理为哈希表。结果证明这是一个错误,因为它实际上需要搜索 250 次。
当你施放它时,它会认为它必须在列表中搜索 47 次。这虽然仍然是错误的,但更接近现实,并导致更好的计划。
为什么强制转换会给出不同的行估计值?不知道。也许几何与地理?如果您想研究这一点,您应该简化查询以摆脱连接和battery_percentage 的标准,只关注空间方面。
【讨论】:
以上是关于为啥在大 IN 条件下投射到地理更快?的主要内容,如果未能解决你的问题,请参考以下文章