无论位置如何,都能找到独特的组合[重复]
Posted
技术标签:
【中文标题】无论位置如何,都能找到独特的组合[重复]【英文标题】:Finding unique combinations irrespective of position [duplicate] 【发布时间】:2015-07-01 10:20:05 【问题描述】:我确定这很简单,但我有一个数据框
df <- data.frame(a = c(1, 2, 3),
b = c(2, 3, 1),
c = c(3, 1, 4))
我想要一个新的数据框,其中包含行中值的唯一组合,而不管它们在哪一列。所以在上面的情况下,我想要
a b c
1 2 3
3 1 4
我试过了
unique(df[c('a', 'b', 'c')])
但它认为 (1, 2, 3) 与 (2, 3, 1) 不同,这是我不想要的。
【问题讨论】:
【参考方案1】:也许是这样的
indx <- !duplicated(t(apply(df, 1, sort))) # finds non - duplicates in sorted rows
df[indx, ] # selects only the non - duplicates according to that index
# a b c
# 1 1 2 3
# 3 3 1 4
【讨论】:
【参考方案2】:如果您的 data.frame 很大,那么速度可能对您来说很重要。使用以下想法,您可以更快地找到重复的集合。
让我们想象为行中的每个可能值分配一个素数并计算每行的乘积。例如,对于给定的df
,我们可以接受primenums = c(2,3,5,7)
并计算产品c(30,30,70)
。然后,此产品向量中的重复项对应于我们的 data.frame 中的重复集。由于乘法的计算速度比任何排序都快得多,因此您可以获得效率。
代码如下。
require("numbers")
primenums <- Primes(100)[1:4]
dfmult <- apply(as.matrix(df), 1, function(z) prod(primenums[z]) )
my_indx <- !duplicated(dfmult)
df[my_indx,]
这里我们借助 numbers
包中的函数 Primes
初始化向量 primenums
,但您可以通过其他方式手动进行。
看看这个例子。这里我展示了效率的比较。
require("numbers")
# generate all unique combinations 10 out of 20
allcomb <- t(combn(20,10))
# make sample of 1 million rows
set.seed(789)
df <- allcomb[sample(nrow(allcomb), 1e6, T),]
# lets sort matrix to show we have duplicates
df <- df[do.call(order, lapply(1:ncol(df), function(i) df[, i])), ]
head(df, 10)
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
# [1,] 1 2 3 4 5 6 7 8 9 10
# [2,] 1 2 3 4 5 6 7 8 9 10
# [3,] 1 2 3 4 5 6 7 8 9 10
# [4,] 1 2 3 4 5 6 7 8 9 10
# [5,] 1 2 3 4 5 6 7 8 9 11
# [6,] 1 2 3 4 5 6 7 8 9 11
# [7,] 1 2 3 4 5 6 7 8 9 11
# [8,] 1 2 3 4 5 6 7 8 9 11
# [9,] 1 2 3 4 5 6 7 8 9 11
# [10,] 1 2 3 4 5 6 7 8 9 11
# to be fair need to permutate numbers in rows before searching for identical sets
df <- t(apply(df, 1, function(z) z[sample(10,10)] ))
df <- as.data.frame(df)
names(df) <- letters[1:10]
# how does it look like now?
head(df, 10)
# a b c d e f g h i j
# 1 2 3 7 9 10 1 4 8 5 6
# 2 4 2 6 3 8 10 9 1 5 7
# 3 4 2 6 8 5 1 10 7 3 9
# 4 6 8 5 4 2 1 10 9 7 3
# 5 11 2 7 6 8 1 9 4 5 3
# 6 9 6 3 11 4 2 8 7 5 1
# 7 5 2 3 11 1 8 6 9 7 4
# 8 3 9 7 1 2 5 4 8 11 6
# 9 6 2 8 3 4 1 11 5 9 7
# 10 4 6 3 9 7 2 1 5 11 8
# now lets shuffle rows to make df more plausible
df <- df[sample(nrow(df), nrow(df)),]
现在,当 data.frame 准备好时,我们可以测试不同的算法。
system.time(indx <- !duplicated(t(apply(df, 1, sort))) )
# user system elapsed
# 119.75 0.06 120.03
# doesn't impress, frankly speaking
library(sets)
system.time(indx <- !duplicated(apply(df, 1, as.set)) )
# user system elapsed
# 91.60 0.00 91.89
# better, but we want faster! =)
# now lets check out the method with prime numbers
primenums <- Primes(100)[1:20]
# [1] 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
system.time(
dfmult <- apply(as.matrix(df), 1, function(z) prod(primenums[z]) )
my_indx <- !duplicated(dfmult) )
# user system elapsed
# 6.44 0.16 6.61
# not bad, isn't it? but lets compare results
identical(indx, my_indx)
# [1] TRUE
# So, if there is no difference, why wait more? ;)
这里有一个重要的假设——我们使用as.matrix(df)
,但是如果我们的data.frame
中不仅有数字变量怎么办?更统一的解决方案如下:
system.time(
dfmult <- apply(
apply(df, 2, function(colmn) as.integer(factor(colmn,
levels = unique(c(as.matrix(df)))))),
1, function(z) prod(primenums[z]) )
my_indx <- !duplicated(dfmult) )
# user system elapsed
# 27.48 0.34 27.84
# is distinctly slower but still much faster then previous methods
如果我们有很多列或非常不同的变量怎么办?在这种情况下,我们可以使用sum(log())
代替prod()
(对于大数,它的计算速度可能更快)。看看这个。
pr <- Primes(5e7)
length(pr)
# [1] 3001134
system.time(N <- sum(log(pr)))
# user system elapsed
# 0.12 0.00 0.13
N
# [1] 49993718
很难想象 df
有 300 万列,但这里没问题。通过这种方式,我们可以使用 RAM 可以容纳的尽可能多的列来携带任何令人难以置信的巨大大小的 df
。
【讨论】:
这是一个不错的选择,但不确定你在这里as.matrix(df)
是否有点作弊。
+ 1 非常快,我喜欢使用素数分解的想法,但这种方法有两个限制: 1) 如果有大量列取素数的乘积将不起作用(例如prod(Primes(200))
等于 prod(Primes(201))
) 和 2) 如果数据框包含大量不同的元素,它将不起作用(因为您需要为每个元素生成一个素数,这可能很麻烦,而且因为产品不会不能像上一点那样被计算机区分)
为了保持冷静而不是骗子而不是as.matrix
,我们可以做apply(df, 2, function(colmn) as.integer(factor(colmn, levels = unique(c(as.matrix(df))))))
。它会更慢但不是很慢,我会在明天给出时间和更新答案,因为现在远离 PC。我同意,素数的使用有局限性,但也许你可以尝试不同的 r 包来处理非常大的数字?
编辑了我的答案以发展这个想法【参考方案3】:
作为一种替代方法,包sets
提供了一种检查集合相等性的快速方法:
library(sets)
df.sets <- apply(df, 1, as.set)
#[[1]]
#1, 2, 3
#[[2]]
#1, 2, 3
#[[3]]
#1, 3, 4
df[!duplicated(df.sets),]
# a b c
#1 1 2 3
#3 3 1 4
【讨论】:
以上是关于无论位置如何,都能找到独特的组合[重复]的主要内容,如果未能解决你的问题,请参考以下文章