基于另一列中的值的一列上的pyspark滞后函数

Posted

技术标签:

【中文标题】基于另一列中的值的一列上的pyspark滞后函数【英文标题】:pyspark lag function on one column based on the value in another column 【发布时间】:2019-04-11 12:36:53 【问题描述】:

我希望能够根据其中一列中的值创建滞后值。

在给定的数据中,Qdf 是 Question 数据框,Adf 是 Answer 数据框。我已经给出了一个额外的解释列(我在最终数据中实际上不需要)

from pyspark.sql.window import Window
import pyspark.sql.functions as func
from pyspark.sql.types import *
from pyspark.sql import SQLContext

ID = ['A' for i in range(0,10)]+ ['B' for i in range(0,10)]
Day = range(1,11)+range(1,11)
Delay = [2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3]
Despatched = [2, 3, 1, 4, 6, 2, 6, 5, 3, 6, 3, 1, 2, 4, 1, 2, 3, 3, 6, 1]
Delivered = [0, 0, 2, 3, 1, 0, 10, 0, 0, 13, 0, 0, 3, 1, 0, 6, 0, 0, 6, 3]
Explanation = ["-", "-", "-", "-", "-", "-", "10 (4+6)", "-", "-", "13 (2+6+5)", "-", "-", "-", "-", "-", "6 (2+4)", "-", "-", "6 (1+2+3)", "-"]

QSchema = StructType([StructField("ID", StringType()),StructField("Day", IntegerType()),StructField("Delay", IntegerType()),StructField("Despatched", IntegerType())])
Qdata = map(list, zip(*[ID,Day,Delay,Despatched]))
Qdf = spark.createDataFrame(Qdata,schema=QSchema) 
Qdf.show()


+---+---+-----+----------+
| ID|Day|Delay|Despatched|
+---+---+-----+----------+
|  A|  1|    2|         2|
|  A|  2|    2|         3|
|  A|  3|    2|         1|
|  A|  4|    3|         4|
|  A|  5|    2|         6|
|  A|  6|    4|         2|
|  A|  7|    3|         6|
|  A|  8|    2|         5|
|  A|  9|    2|         3|
|  A| 10|    2|         6|
|  B|  1|    2|         3|
|  B|  2|    2|         1|
|  B|  3|    3|         2|
|  B|  4|    2|         4|
|  B|  5|    4|         1|
|  B|  6|    3|         2|
|  B|  7|    2|         3|
|  B|  8|    2|         3|
|  B|  9|    2|         6|
|  B| 10|    3|         1|
+---+---+-----+----------+

发货数量应在延迟时间后记录为已发货。理想情况下,如果我可以根据延迟在发送的列上应用lag function,那就太好了。 Answer 数据集如下所示:

Adata = map(list, zip(*[ID,Day,Delay,Despatched,Delivered,Explanation]))
ASchema = StructType([StructField("ID", StringType()),StructField("Day", IntegerType()),StructField("Delay", IntegerType()),StructField("Despatched", IntegerType()),StructField("Delivered", IntegerType()),StructField("Explanation", StringType())])
Adf = spark.createDataFrame(Adata,schema=ASchema) 
Adf.show()

+---+---+-----+----------+---------+-----------+
| ID|Day|Delay|Despatched|Delivered|Explanation|
+---+---+-----+----------+---------+-----------+
|  A|  1|    2|         2|        0|          -|
|  A|  2|    2|         3|        0|          -|
|  A|  3|    2|         1|        2|          -|
|  A|  4|    3|         4|        3|          -|
|  A|  5|    2|         6|        1|          -|
|  A|  6|    4|         2|        0|          -|
|  A|  7|    3|         6|       10|   10 (4+6)|
|  A|  8|    2|         5|        0|          -|
|  A|  9|    2|         3|        0|          -|
|  A| 10|    2|         6|       13| 13 (2+6+5)|
|  B|  1|    2|         3|        0|          -|
|  B|  2|    2|         1|        0|          -|
|  B|  3|    3|         2|        3|          -|
|  B|  4|    2|         4|        1|          -|
|  B|  5|    4|         1|        0|          -|
|  B|  6|    3|         2|        6|    6 (2+4)|
|  B|  7|    2|         3|        0|          -|
|  B|  8|    2|         3|        0|          -|
|  B|  9|    2|         6|        6|  6 (1+2+3)|
|  B| 10|    3|         1|        3|          -|
+---+---+-----+----------+---------+-----------+

我已经尝试了以下代码以获得 2 的恒定延迟:

Qdf1=Qdf.withColumn('Delivered_lag',func.lag(Qdf['Despatched'],2).over(Window.partitionBy("ID").orderBy("Day")))

但是,当我尝试在一个列上使用滞后并在另一列上滞后时,我收到错误:

Qdf1=Qdf.withColumn('Delivered_lag',func.lag(Qdf['Despatched'],Qdf['Delay']).over(Window.partitionBy("ID").orderBy("Day")))

TypeError: 'Column' 对象不可调用

我怎样才能克服这个问题?我正在使用 PySpark 2.3.1 版和 python 2.7.13 版。

【问题讨论】:

能否请您在使用 lag() 的地方添加代码 sn-p? @cronoik 添加了代码 sn-p 和使用的库 【参考方案1】:

lag-函数将一个固定值作为计数参数,但你可以做的是用when 和otherwise 创建一个循环来得到你想要的:

from pyspark.sql.window import Window
import pyspark.sql.functions as F
import pyspark.sql.types as T 

ID = ['A' for i in range(0,10)]+ ['B' for i in range(0,10)]
#I had to modify this line as I'am working with python3
Day = list(range(1,11))+list(range(1,11))
Delay = [2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3]
Despatched = [2, 3, 1, 4, 6, 2, 6, 5, 3, 6, 3, 1, 2, 4, 1, 2, 3, 3, 6, 1]
Delivered = [0, 0, 2, 3, 1, 0, 10, 0, 0, 13, 0, 0, 3, 1, 0, 6, 0, 0, 6, 3]
Explanation = ["-", "-", "-", "-", "-", "-", "10 (4+6)", "-", "-", "13 (2+6+5)", "-", "-", "-", "-", "-", "6 (2+4)", "-", "-", "6 (1+2+3)", "-"]

QSchema = T.StructType([T.StructField("ID", T.StringType()),T.StructField("Day", T.IntegerType()),T.StructField("Delay", T.IntegerType()),T.StructField("Despatched", T.IntegerType())])
Qdata = map(list, zip(*[ID,Day,Delay,Despatched]))
Qdf = spark.createDataFrame(Qdata,schema=QSchema) 
#until here it was basically your code

#At first we add an empty Delivered_lag column to the Qdf
#That allows us to use the same functionality for all iterations of the following loop
Qdf = Qdf.withColumn('Delivered_lag',  F.lit(None).cast(T.IntegerType()))

#Now we loop over the distinctive values of Qdf.delay and run the lag function for every value
#otherwise is necessary to keep the previous calculated values 
for delay in Qdf.select('delay').distinct().collect():
    Qdf = Qdf.withColumn('Delivered_lag', F.when(Qdf['Delay'] == delay.delay, F.lag(Qdf['Despatched'],delay.delay).over(Window.partitionBy("ID").orderBy("Day"))).otherwise(Qdf['Delivered_lag']))

Qdf.show()

输出:

+---+---+-----+----------+-------------+ 
| ID|Day|Delay|Despatched|Delivered_lag|
+---+---+-----+----------+-------------+ 
|  B|  1|    2|         3|         null|
|  B|  2|    2|         1|         null|
|  B|  3|    3|         2|         null| 
|  B|  4|    2|         4|            1| 
|  B|  5|    4|         1|            3| 
|  B|  6|    3|         2|            2| 
|  B|  7|    2|         3|            1| 
|  B|  8|    2|         3|            2| 
|  B|  9|    2|         6|            3| 
|  B| 10|    3|         1|            3| 
|  A|  1|    2|         2|         null| 
|  A|  2|    2|         3|         null| 
|  A|  3|    2|         1|            2| 
|  A|  4|    3|         4|            2| 
|  A|  5|    2|         6|            1| 
|  A|  6|    4|         2|            3| 
|  A|  7|    3|         6|            4| 
|  A|  8|    2|         5|            2| 
|  A|  9|    2|         3|            6| 
|  A| 10|    2|         6|            5| 
+---+---+-----+----------+-------------+

【讨论】:

我希望有一个比循环更有效的解决方案,但这很有效。谢谢! 这之前没有出现,***.com/questions/45961164/…

以上是关于基于另一列中的值的一列上的pyspark滞后函数的主要内容,如果未能解决你的问题,请参考以下文章

在另一列上查找最近的时间戳并在新列中添加值 PySpark

如何根据 PySpark 数据框的另一列中的值修改列? F.当边缘情况

选择一列上的值在另一列上具有相同的一组值

Pyspark 通过使用另一列中的值替换 Spark 数据框列中的字符串

Pyspark:如何根据另一列中的匹配值从数组中的第一次出现中选择直到最后的值

Pyspark数据帧:根据另一列的值提取列