使用torch.serialize两次时线程内存不足
Posted
技术标签:
【中文标题】使用torch.serialize两次时线程内存不足【英文标题】:Torch out of memory in thread when using torch.serialize twice 【发布时间】:2016-11-20 03:42:54 【问题描述】:我正在尝试将并行数据加载器添加到 torch-dataframe 以添加 torchnet compatibility。我使用了tnt.ParallelDatasetIterator 和changed it 以便:
-
在线程外加载一个基本批处理
批处理被序列化并发送到线程
在线程中,批处理被反序列化并将批处理数据转换为张量
张量返回到具有
input
和target
键的表中,以匹配tnt.Engine 设置。
问题在第二次调用 enque
时出现错误:.../torch_distro/install/bin/luajit: not enough memory
。我目前只使用mnist 和改编的mnist-example。 enque
循环现在看起来像这样(带有调试内存输出):
-- `samplePlaceholder` stands in for samples which have been
-- filtered out by the `filter` function
local samplePlaceholder =
-- The enque does the main loop
local idx = 1
local function enqueue()
while idx <= size and threads:acceptsjob() do
local batch, reset = self.dataset:get_batch(batch_size)
if (reset) then
idx = size + 1
else
idx = idx + 1
end
if (batch) then
local serialized_batch = torch.serialize(batch)
-- In the parallel section only the to_tensor is run in parallel
-- this should though be the computationally expensive operation
threads:addjob(
function(argList)
io.stderr:write("\n Start");
io.stderr:write("\n 1: " ..tostring(collectgarbage("count")))
local origIdx, serialized_batch, samplePlaceholder = unpack(argList)
io.stderr:write("\n 2: " ..tostring(collectgarbage("count")))
local batch = torch.deserialize(serialized_batch)
serialized_batch = nil
collectgarbage()
collectgarbage()
io.stderr:write("\n 3: " .. tostring(collectgarbage("count")))
batch = transform(batch)
io.stderr:write("\n 4: " .. tostring(collectgarbage("count")))
local sample = samplePlaceholder
if (filter(batch)) then
sample =
sample.input, sample.target = batch:to_tensor()
end
io.stderr:write("\n 5: " ..tostring(collectgarbage("count")))
collectgarbage()
collectgarbage()
io.stderr:write("\n 6: " ..tostring(collectgarbage("count")))
io.stderr:write("\n End \n");
return
sample,
origIdx
end,
function(argList)
sample, sampleOrigIdx = unpack(argList)
end,
idx, serialized_batch, samplePlaceholder
)
end
end
end
我已经洒了collectgarbage
并尝试移除任何不需要的对象。内存输出相当直接:
Start
1: 374840.87695312
2: 374840.94433594
3: 372023.79101562
4: 372023.85839844
5: 372075.41308594
6: 372023.73632812
End
循环enque
的函数是微不足道的无序函数(内存错误抛出第二个enque
和):
iterFunction = function()
while threads:hasjob() do
enqueue()
threads:dojob()
if threads:haserror() then
threads:synchronize()
end
enqueue()
if table.exact_length(sample) > 0 then
return sample
end
end
end
【问题讨论】:
【参考方案1】:所以问题在于torch.serialize
,其中设置中的函数将整个数据集耦合到函数。添加时:
serialized_batch = nil
collectgarbage()
collectgarbage()
问题已解决。我进一步想知道是什么占用了这么多空间,而罪魁祸首是我在一个环境中定义了这个函数,其中包含一个与函数交织在一起的大型数据集,大大增加了大小。这里数据本地的原始定义
mnist = require 'mnist'
local dataset = mnist[mode .. 'dataset']()
-- PROBLEMATIC LINE BELOW --
local ext_resource = dataset.data:reshape(dataset.data:size(1),
dataset.data:size(2) * dataset.data:size(3)):double()
-- Create a Dataframe with the label. The actual images will be loaded
-- as an external resource
local df = Dataframe(
Df_Dict
label = dataset.label:totable(),
row_id = torch.range(1, dataset.data:size(1)):totable()
)
-- Since the mnist package already has taken care of the data
-- splitting we create a single subsetter
df:create_subsets
subsets = Df_Dictcore = 1,
class_args = Df_Tbl(
batch_args = Df_Tbl(
label = Df_Array("label"),
data = function(row)
return ext_resource[row.row_id]
end
)
)
事实证明,删除我突出显示的行会将内存使用量从 358 Mb 降低到 0.0008 Mb!我用来测试性能的代码是:
local mem =
table.insert(mem, collectgarbage("count"))
local ser_data = torch.serialize(batch.dataset)
table.insert(mem, collectgarbage("count"))
local ser_retriever = torch.serialize(batch.batchframe_defaults.data)
table.insert(mem, collectgarbage("count"))
local ser_raw_retriever = torch.serialize(function(row)
return ext_resource[row.row_id]
end)
table.insert(mem, collectgarbage("count"))
local serialized_batch = torch.serialize(batch)
table.insert(mem, collectgarbage("count"))
for i=2,#mem do
print(i-1, (mem[i] - mem[i-1])/1024)
end
最初产生的输出:
1 0.0082607269287109
2 358.23344707489
3 0.0017471313476562
4 358.90182781219
修复后:
1 0.0094480514526367
2 0.00080204010009766
3 0.00090408325195312
4 0.010146141052246
我尝试将setfenv
用于该功能,但没有解决问题。将序列化数据发送到线程仍然存在性能损失,但主要问题已解决,并且如果没有昂贵的数据检索器,函数会小得多。
【讨论】:
以上是关于使用torch.serialize两次时线程内存不足的主要内容,如果未能解决你的问题,请参考以下文章
Mongoose Pagination工作不正常。当我刷新页面两次时,它可以工作