神经网络值错误:形状未对齐
Posted
技术标签:
【中文标题】神经网络值错误:形状未对齐【英文标题】:Neural Networks Value Errors: Shapes not alligned 【发布时间】:2016-07-01 01:27:10 【问题描述】:我正在尝试将神经网络(多层感知器)应用于我的数据。我收到此错误:ValueError: 形状 (3,) 和 (4,99) 未对齐:3 (dim 0) != 4 (dim 0)
我在这一行有错误:a = self.activation(np.dot(a, self.weights[l]))
如果有人可以帮助我,我会很高兴。谢谢。
nn_inputs: [[15, 0, 2.48489062802], [-35, 29, 1.15616438943], [-5, -1, 2.32958496377], [-48, 33, 0.706488511889], [ -10, 2, 2.09510386284], [-3, 11, 1.8423515073]]
nn_labels: [0, 1, 0, 1, 0, 1]
def tanh(x):
return np.tanh(x)
def tanh_deriv(x):
return 1.0 - np.tanh(x)**2
def logistic(x):
return 1/(1 + np.exp(-x))
def logistic_derivative(x):
return logistic(x)*(1-logistic(x))
class NeuralNetwork:
def __init__(self, layers, activation='tanh'):
"""
:param layers: A list containing the number of units in each layer.
Should be at least two values
:param activation: The activation function to be used. Can be
"logistic" or "tanh"
"""
if activation == 'logistic':
self.activation = logistic
self.activation_deriv = logistic_derivative
elif activation == 'tanh':
self.activation = tanh
self.activation_deriv = tanh_deriv
self.weights = []
for i in range(1, len(layers) - 1):
self.weights.append((2*np.random.random((layers[i - 1] + 1, layers[i]+ 1))-1)*0.25)
self.weights.append((2*np.random.random((layers[i] + 1, layers[i +
1]))-1)*0.25)
def fit(self, X, y, learning_rate=0.2, epochs=10000):
X = np.atleast_2d(X)
temp = np.ones([X.shape[0], X.shape[1]+1])
temp[:, 0:-1] = X # adding the bias unit to the input layer
X = temp
y = np.array(y)
for k in range(epochs):
i = np.random.randint(X.shape[0])
a = [X[i]]
for l in range(len(self.weights)):
a.append(self.activation(np.dot(a[l], self.weights[l])))
error = y[i] - a[-1]
deltas = [error * self.activation_deriv(a[-1])]
for l in range(len(a) - 2, 0, -1): # we need to begin at the second to last layer
deltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_deriv(a[l]))
deltas.reverse()
for i in range(len(self.weights)):
layer = np.atleast_2d(a[i])
delta = np.atleast_2d(deltas[i])
self.weights[i] += learning_rate * layer.T.dot(delta)
def predict(self, x):
x = np.array(x)
temp = np.ones(x.shape[0]+1)
temp[0:-1] = x
a = temp
for l in range(0, len(self.weights)):
a = self.activation(np.dot(a, self.weights[l]))
return a
nn_inputs = map(list, zip(speed, occupancy, capacity))
nn_labels = labels
nn = NeuralNetwork([3,len(nn_inputs),1], 'tanh')
nn.fit(nn_inputs, nn_labels)
for i in [[0, 0], [0, 1], [1, 0], [1,1]]:
print(i,nn.predict(i))
【问题讨论】:
【参考方案1】:我得到了相同的错误代码,这似乎是由于使用了与 NN 初始化中向量的第一个元素不同的数据形状 你必须有: nn = 神经网络([2,len(nn_inputs),1], 'tanh') 代替 nn = 神经网络([3,len(nn_inputs),1], 'tanh') 和 NeuralNetwork 类一样,在处理时添加了偏差
我在下面为您提供对我来说很好的整个代码:
定义线性(x): 返回 2*x+3 def 线性导数(x): 返回 2 def tanh(x): 返回 np.tanh(x)
def tanh_deriv(x): 返回 1.0 - np.tanh(x)**2
定义逻辑(x): 返回 1/(1 + np.exp(-x))
定义逻辑导数(x): 返回logistic(x)*(1-logistic(x))
类神经网络: def init(self, layers, activation='tanh'): """ :param layers: Une liste contenant le nombre d'unités de chaque couche (la couche d'entrée, les couches cachées et la couche de sortie Doit avoir au moins 2 valeurs (nombre de neurones de la couche d'entrée et celle de 沙发上的出击 :param activation: la fonction d'activation à utiliser。 peut-être “物流”或“tanh” """ self.layers=层 如果激活 == '逻辑': self.activation = 逻辑 self.activation_deriv = 逻辑导数 elif 激活 == 'tanh': self.activation = tanh self.activation_deriv = tanh_deriv elif 激活 == 'lineaire': self.activation = 线性 self.activation_deriv = linear_deriv
#self.weights est une liste de matrice de poids. chaque matrice représente
#l'ensemble des poids qui lient une couche et celle qui la suit
#la première lie la couche des données à la première couche cachée
#la seconde lie la première couche cachée à la seconde. Ainsi de suite
#jusqu'à la dernière qui lie la dernière couche cachée et la couche de sortie
self.weights = []
""" Initialisation des poids.
On initialise les poids que portent les liens entre les neurones des couches
qui se suivent. Pour chaque couche exceptée la dernière, on ajoute le biais
qui correspond à la valeur seuil de l'activation"""
for i in range(1, len(layers) - 1):
self.weights.append((2*np.random.random((layers[i - 1] + 1, layers[i]
+ 1))-1)*0.25)
#initialisation des poids des connexions entre la dernière couche cachée et
#la couche de sortie
self.weights.append((2*np.random.random((layers[i] + 1, layers[i +
1]))-1)*0.25)
"""la fonction d'apprentissage au taux d'apprentissage 0.2 avec un certain nombre d'itérations"""
def fit(self, X, y, taux_apprentissage=0.2, iterations=10000 ):
X = np.atleast_2d(X)#Transformation de l'entrée (les données) en une matrice de deux dimension
#Si on n'a pas déjà une matrice
temp = np.ones([X.shape[0], X.shape[1]+1])
temp[:, 0:-1] = X # Ajout du biais à la couche d'éntrée
X = temp
y = np.array(y)
for k in range(iterations):
#choix d'un index au hasard
i = np.random.randint(X.shape[0])
#recupération de la donnée qui se trouve à cet index dans la matrice des données X
a = [X[i]]
for l in range(len(self.weights)):
#calcul et propagation de l'activation de couche en couche de la première
#à la dernière
a.append(self.activation(np.dot(a[l], self.weights[l])))
#estimation de l'erreur entre la sortie obtenue et la sortie désirée
error = y[i] - a[-1]
#calcul du signal de l'erreur pour la couche de sortie
deltas = [error * self.activation_deriv(a[-1])]
#calcul du signal d'erreur pour les autres couches
for l in range(len(a) - 2, 0, -1):
# On doit commencer le calcul
# de l'avant dernière couche d'ou le "len(a)-2" à la première
#on multiplie la derniere valeur du signal d'erreur par
deltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_deriv(a[l]))
deltas.reverse()
#Mise à jour des poids par retropropagation du gradient
for i in range(len(self.weights)):
layer = np.atleast_2d(a[i])
delta = np.atleast_2d(deltas[i])
self.weights[i] += taux_apprentissage * layer.T.dot(delta)
if k==iterations-1:
for u in range (X.shape[0]):
a = [X[u]]
error=0.0
for l in range(len(self.weights)):
#calcul et propagation de l'activation de couche en couche de la première
#à la dernière
a.append(self.activation(np.dot(a[l], self.weights[l])))
#estimation de l'erreur entre la sortie obtenue et la sortie désirée
e=(y[u] - a[-1])
#calcul de l'erreur quadratique moyenne
error =error + e[0]**2
if error/X.shape[0]> -0.000001 and error/X.shape[0]> 0.000001 :
print("erreur globale: ")
print(error/X.shape[0])
break
else:
k=0
def predict(self, x):
x = np.array(x)
temp = np.ones(x.shape[0]+1)
temp[0:-1] = x
a = temp
for l in range(0, len(self.weights)):
a=self.activation(np.dot(a[l], self.weights[l]))
return a
希望这会有所帮助
【讨论】:
不幸的是它没有用。我不明白形状在 NN @dougoutigui 中的工作原理以上是关于神经网络值错误:形状未对齐的主要内容,如果未能解决你的问题,请参考以下文章
ValueError:形状(240000,28,28)和(2,512)未对齐:28(dim 2)!= 2(dim 0)
ValueError:形状(100,784)和(4,6836)未对齐:784(dim 1)!= 4(dim 0)
线性回归器无法预测一组值;错误:ValueError:形状(100,1)和(2,1)未对齐:1(dim 1)!= 2(dim 0)