权重没有使用 Gradient Tape 和 apply_gradients() 更新
Posted
技术标签:
【中文标题】权重没有使用 Gradient Tape 和 apply_gradients() 更新【英文标题】:Weights were not updated using Gradient Tape and apply_gradients() 【发布时间】:2021-08-20 12:30:35 【问题描述】:我正在构建一个具有自定义损失函数的 DNN,并且我正在使用 TensorFlow.kerasenter code here
中的 Gradient Tape 训练这个 DNN。代码运行没有任何错误,但是,就我可以检查 DNN 的权重而言,权重根本没有更新。我完全按照 TensorFlow 网站上的建议搜索了答案,但仍然不明白是什么原因。这是我的代码:
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, LeakyReLU, Concatenate
from tensorflow.keras.models import Model
from tensorflow.keras import backend as K
from tensorflow.keras import optimizers
# Generate a random train data
c0_train = np.array([30 * np.random.uniform() for i in range(10000)])
# Build a simple DNN
c0_input = Input(shape=(1,), name='c0')
hidden_1 = Dense(100)(c0_input)
activation_1 = LeakyReLU(alpha=0.1)(hidden_1)
hidden_2 = Dense(100)(activation_1)
activation_2 = LeakyReLU(alpha=0.1)(hidden_2)
hidden_3 = Dense(100)(activation_2)
activation_3 = LeakyReLU(alpha=0.1)(hidden_3)
x0_output = Dense(1, name='x0')(activation_3)
model = Model(inputs=c0_input, outputs=x0_output)
# Calculating the loss function
def cal_loss(c0_input):
x0_output = model(c0_input)
loss = tf.reduce_mean(
tf.multiply(c0_input, tf.square(tf.subtract(x0_output, c0_input))))
return loss
# Compute the gradient calculation
@tf.function
def compute_loss_grads(c0_input):
with tf.GradientTape() as tape:
loss = cal_loss(c0_input)
grads = tape.gradient(loss, model.trainable_variables)
return loss, grads
# Optimizer
opt = optimizers.Adam(learning_rate=0.01)
# Start looping
for epoch in range(50):
print('Epoch = ', epoch)
# Compute the loss and gradients
[loss, grads] = compute_loss_grads(tf.cast(c0_train, tf.float32))
# Adjust the weights of the model
opt.apply_gradients(zip(grads, model.trainable_variables))
我已经使用model.get_weights()
检查了模型的权重,它们在运行循环之前和之后看起来完全一样。那么这里的问题是什么?还有一个问题,我怎样才能打印出每个时期的损失?
【问题讨论】:
【参考方案1】:重量确实发生了变化。您可以检查如下;建立模型后保存您的权重文件(这些是初始权重)。
model = Model(inputs=c0_input, outputs=x0_output)
a_weg = model.get_weights()
现在,运行您的训练循环。训练完成后,得到新的权重如下,前后对比。
b_weg = model.get_weights()
a_weg[:1]
[array([[ 0.03541631, -0.02134866, 0.17080751, 0.10538128, 0.1361396 ,
0.08645812, 0.114059 , 0.216836 , -0.22464292, -0.21979895,
-0.23927784, -0.00685263, 0.2167016 , 0.09989142, -0.17772573,
0.16095945, -0.10120587, -0.22456157, -0.22947621, 0.04009536,
0.01029667, -0.18134505, -0.11318983, 0.10220072, 0.10100928,
b_weg[:1]
[array([[ 0.05140253, 0.00969543, 0.15155758, 0.07171137, 0.15917814,
0.10883425, 0.11428417, 0.17012525, -0.25049415, -0.20693016,
-0.20231842, 0.005939 , 0.19197173, 0.07405043, -0.14260964,
0.12490476, -0.11532102, -0.24605738, -0.25135723, 0.01863468,
0.0311144 , -0.20050383, -0.11864465, 0.07961675, 0.11557189,
这就是您可以在每个时期打印损失分数的方式。
# Start looping
for epoch in range(5):
# Compute the loss and gradients
[loss, grads] = compute_loss_grads(tf.cast(c0_train, tf.float32))
# Adjust the weights of the model
opt.apply_gradients(zip(grads, model.trainable_variables))
print('Epoch = ', epoch, ' - loss = ', loss.numpy())
Epoch = 0 - loss = 5962.977
Epoch = 1 - loss = 3042.2874
Epoch = 2 - loss = 2877.9978
Epoch = 3 - loss = 2607.5347
Epoch = 4 - loss = 2173.3213
【讨论】:
感谢您的帮助。我已经检查并同意重量确实按照您所说的那样改变。这是另一个问题,你可以看到损失基本上是:Minimize (x0_ouput - c0_input)**2,这意味着这个 DNN 将给出输出 x0_output,它应该非常接近 c0_input。但是,我已经将此模型与测试输入 = np.array([2., 3., 6.]) 一起使用,结果不会接近。我这里有什么问题吗? 对此不确定,但您可以更好地了解代码中使用的损失函数。但是,请随时提出新问题并提供适当的详细信息。以上是关于权重没有使用 Gradient Tape 和 apply_gradients() 更新的主要内容,如果未能解决你的问题,请参考以下文章
机器学习技法(11)--Gradient Boosted Decision Tree
用于打开、关闭、读取和写入文件到 TAPE 驱动器的 REXX 命令是啥?