用于时间序列处理的 Spark 流(按时间间隔划分数据)

Posted

技术标签:

【中文标题】用于时间序列处理的 Spark 流(按时间间隔划分数据)【英文标题】:Spark streaming for times series processing (divide data by time interval) 【发布时间】:2016-07-25 01:28:25 【问题描述】:

我从UDP socket取数据流(nginx在线日志),数据结构为:

date                | ip       | mac   | objectName | rate | size
2016-04-05 11:17:34 | 10.0.0.1 | e1:e2 | book1      | 10   | 121
2016-04-05 11:17:34 | 10.0.0.2 | a5:a8 | book2351   | 8    | 2342
2016-04-05 11:17:34 | 10.0.0.3 | d1:b56| bookA5     | 10   | 12

2016-04-05 11:17:35 | 10.0.0.1 | e1:e2 | book67     | 10   | 768
2016-04-05 11:17:35 | 10.0.0.2 | a5:a8 | book2351   | 8    | 897
2016-04-05 11:17:35 | 10.0.0.3 | d1:b56| bookA5     | 9    | 34
2016-04-05 11:17:35 | 10.0.0.4 | c7:c2 | book99     | 9    | 924
...
2016-04-05 11:18:01 | 10.0.0.1 | e1:e2 | book-10    | 8    | 547547
2016-04-05 11:18:17 | 10.0.0.4 | c7:c2 | book99     | 10   | 23423
2016-04-05 11:18:18 | 10.0.0.3 | d1:b56| bookA5     | 10   | 1138

我必须:

聚合数据,按分钟分区 - 一个结果行用于(分钟、ip、ma​​c) objectName - 可以在一分钟内更改,我必须取第一个,即2016-04-05 11:17:34 | 10.0.0.1 | e1:e2 book1 更改为book67,所以必须是book1 rate - 在 munute 期间变化率的计数 size - 大小之间的差异(分区内的上一个时间,分区内的当前时间),即2016-04-05 11:17:34 | 10.0.0.1 | e1:e2 = ... 768 - 121

所以,结果(没有计算大小):

date                | ip       | mac   | objectName | changes | size
2016-04-05 11:17:00 | 10.0.0.1 | e1:e2 | book1      | 0       | 768 - 121
2016-04-05 11:17:00 | 10.0.0.2 | a5:a8 | book2351   | 0       | 897 - 2342
2016-04-05 11:17:00 | 10.0.0.3 | d1:b56| bookA5     | 1       | 34 - 12    
2016-04-05 11:17:00 | 10.0.0.4 | c7:c2 | book99     | 0       | 924
...
2016-04-05 11:18:00 | 10.0.0.1 | e1:e2 | book-10    | 0       | 547547
2016-04-05 11:18:00 | 10.0.0.4 | c7:c2 | book99     | 0       | 23423
2016-04-05 11:18:00 | 10.0.0.3 | d1:b56| bookA5     | 0       | 1138

这里是我的代码快照,我知道updateStateByKeywindow 但我不能特别理解,当周期(分钟)改变时,我如何将数据刷新到数据库或文件系统:

private static final Duration SLIDE_INTERVAL = Durations.seconds(10);
private static final String nginxLogHost = "localhost";
private static final int nginxLogPort = 9999;
private class Raw 
  LocalDate time; // full time with seconds
  String ip;
  String mac;
  String objectName;
  int rate;
  int size;

private class Key 
  LocalDate time; // time with 00 seconds
  String ip;
  String mac;

private class RawValue 
  LocalDate time; // full time with seconds
  String objectName;
  int rate;
  int size;

private class Value 
  String objectName;
  int changes;
  int size;

public static void main(String[] args) 
    SparkConf conf = new SparkConf().setMaster("local[4]").setAppName("TestNginxLog");
    conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer");
    JavaStreamingContext jssc = new JavaStreamingContext(conf, SLIDE_INTERVAL);
    jssc.checkpoint("/tmp");
JavaReceiverInputDStream<Raw> logRecords = jssc.receiverStream(new NginxUDPReceiver(nginxLogHost, nginxLogPort));
 PairFunction<Raw, Key, RawValue> pairFunction = (PairFunction<Raw, Key, RawValue>) rawLine -> 
        LocalDateTime time = rawLine.getDateTime();
        Key k = new Key(LocalTime.of(time.getHour(), time.getMinute()), rawLine.getIp(), rawLine.getMac());
        RawValue v = new RawValue(time, rawLine.getObjectName(), rawLine.getRate(), rawLine.getSize());
        return new Tuple2<>(k, v);
    ;
    JavaPairDStream<Key, RawValue> logDStream = logRecords.mapToPair(pairFunction);

【问题讨论】:

【参考方案1】:

这是部分答案,但问题尚未完成。在mapToPair之后我使用:

    // 1 key - N values
    JavaPairDStream<Key, Iterable<Value>> abonentConnects = logDStream.groupByKey();

    // Accumulate data
    Function2<List<Iterable<Value>>, Optional<List<Value>>, Optional<List<Value>>> updateFunc = (Function2<List<Iterable<Value>>, Optional<List<Value>>, Optional<List<Value>>>) (values, previousState) -> 
        List<Value> sum = previousState.or(new ArrayList<>());
        for (Iterable<Value> v : values) 
            v.forEach(sum::add);
        
        return Optional.of(sum);
    ;
    JavaPairDStream<Key, List<Value>> state = abonentConnects.updateStateByKey(updateFunc);

    // filter data (previous minute)
    Function<Tuple2<Key, List<Value>>, Boolean> filterFunc = (Function<Tuple2<Key, List<Value>>, Boolean>) v1 -> 
        LocalDateTime previousTime = LocalDateTime.now().minusMinutes(1).withSecond(0).withNano(0);
        LocalDateTime valueTime = v1._1().getTime();
        return valueTime.compareTo(previousTime) == 0;
    ;
    JavaPairDStream<Key, List<Value>> filteredRecords = state.filter(filterFunc);

    // save data
    filteredRecords.foreachRDD(x -> 
        if (x.count() > 0) 
            x.saveAsTextFile("/tmp/xxx/grouped/" + LocalDateTime.now().toString().replace(":", "-").replace(".", "-"));
        
    );

    streamingContext.start();
    streamingContext.awaitTermination();

随着结果数据的产生,但由于每 5 秒执行一次操作,我每 5 秒得到相同的重复数据。 我知道,我必须使用 Optional.absent() 从流中清除保存的数据。我试过用它,但我不能在一个片段中组合:将数据保存到文件系统或 HashMap |立即清除保存的数据。问题:我该怎么做?

【讨论】:

【参考方案2】:

所以,我将通过自己的回答来结束这个问题。您可以将此函数示例用作updateStateByKey 的参数。这段代码中的线索词是:Optional.absent()消除已经保存的数据,Optional.of(...对数据进行分组,setAggregateReady(true)。 最后一个用于通过过滤器getAggregateReady(true) 和一些Spark Streaming 输出操作将数据保存到外部目标(数据库或文件系统),例如foreachRDD。 之后下一批中的这些数据落入updateStateByKey,将被代码removeIf(T::isAggregateReady)淘汰。

/**
 * It aggregates data between batches.
 * <p>
 * currentBatchValues values that was got in current batch
 * previousBatchesState values that was got in all previous batches
 * You have to clear data (return for them Optional.absent()) to eliminate them from DStream.
 * First batch: data checked for aggregateReady.
 * Second batch: data, signed aggregateReady=true removes from DStream (you have to save them to DB or another target before this cleaning)
 */
protected Function2<List<Iterable<T>>, Optional<List<T>>, Optional<List<T>>> updateDataRowsFunc = (currentBatchValues, previousBatchesState) -> 

    Optional<List<T>> res;

    //log.debug("previousBatchesState isPresent ", previousBatchesState.isPresent());
    //log.debug("previousBatchesState ", previousBatchesState);
    //log.debug("currentBatchValues isEmpty ", currentBatchValues.isEmpty());
    //log.debug("currentBatchValues ", currentBatchValues);

    // previous data that was aggregateReady already saved
    if (previousBatchesState.isPresent()) 
        log.debug("count before remove = ", previousBatchesState.get().size());
        previousBatchesState.get().removeIf(T::isAggregateReady);
        // absent previous state if all of it's data was aggregated already
        int cntBefore = previousBatchesState.get().size();
        if (cntBefore == 0) previousBatchesState = Optional.absent();
    

    // warn: can't bear comparator outside, for the reason that error "Task can'not serializable"
    Comparator<T> dataRowByAggGroupComparator = (o1, o2) -> o1.getAggregateGroup().compareTo(o2.getAggregateGroup());

    // no data was collected at previous batches && data exists in current batch
    if (!previousBatchesState.isPresent() && !currentBatchValues.isEmpty()) 

        log.debug("algorithm 1");

        // list currentBatchValues contains only 1 value (1-to-N NginxDataRow records), so we getAllJsonFilesInFolder it Iterable and convert to List
        // warn: may be another way to compare Iterable elements, without using List
        List<T> listDataRow = new ArrayList<>();
        currentBatchValues.get(0).forEach(listDataRow::add);

        // in one batch we can getAllJsonFilesInFolder data for 2 aggregateGroups, if batch was split between groups
        LocalDateTime minAggGroup = listDataRow.stream().min(dataRowByAggGroupComparator).get().getAggregateGroup();
        LocalDateTime maxAggGroup = listDataRow.stream().max(dataRowByAggGroupComparator).get().getAggregateGroup();

        // batch was split between groups
        if (!minAggGroup.equals(maxAggGroup)) 
            log.debug("batch was split between groups  and ", minAggGroup, maxAggGroup);
            // set ready to aggregate for previous group of data, because aggregate group was changed
            listDataRow.stream().filter(z -> z.getAggregateGroup().equals(minAggGroup)).forEach(z -> z.setAggregateReady(true));
        

        res = Optional.of(listDataRow);
        //log.debug("agg res = ", res);

        // data exist in both: previous and current batches
     else if (previousBatchesState.isPresent() && !currentBatchValues.isEmpty()) 

        log.debug("algorithm 2");

        List<T> listCurrentBatchDataRow = new ArrayList<>();
        currentBatchValues.get(0).forEach(listCurrentBatchDataRow::add);

        LocalDateTime previousBatchAggGroup = previousBatchesState.get().stream().findFirst().get().getAggregateGroup();

        // in one batch we can getAllJsonFilesInFolder data for 2 aggregateGroups, if batch was split between groups
        LocalDateTime minCurrentBatchAggGroup = listCurrentBatchDataRow.stream().min(dataRowByAggGroupComparator).get().getAggregateGroup();
        LocalDateTime maxCurrentBatchAggGroup = listCurrentBatchDataRow.stream().max(dataRowByAggGroupComparator).get().getAggregateGroup();

        // previous and current data in different groups
        if (!previousBatchAggGroup.equals(maxCurrentBatchAggGroup)) 

            log.debug("previous batch needed to save, because agg group was changed from  to ", previousBatchAggGroup, maxCurrentBatchAggGroup);
            // set ready to aggregate for previous group of data, because aggregate group was changed
            previousBatchesState.get().stream().forEach(z -> z.setAggregateReady(true));

            // batch was split between groups
            if (!minCurrentBatchAggGroup.equals(maxCurrentBatchAggGroup)) 

                log.debug("batch was split between groups  and ", minCurrentBatchAggGroup, maxCurrentBatchAggGroup);
                listCurrentBatchDataRow.stream().filter(z -> z.getAggregateGroup().equals(minCurrentBatchAggGroup)).forEach(z -> z.setAggregateReady(true));

            
        

        // union previous and current batches data
        previousBatchesState.get().addAll(listCurrentBatchDataRow);

        res = Optional.of(previousBatchesState.get());
        //log.debug("agg res = ", res);

        // data exist in previous batch but current batch is empty
     else if (previousBatchesState.isPresent() && currentBatchValues.isEmpty()) 

        log.debug("algorithm 3");

        res = previousBatchesState;
        //log.debug("agg res = ", res);

        // all of previous data was aggregated and absent() already
     else if (!previousBatchesState.isPresent() && currentBatchValues.isEmpty()) 

        log.debug("algorithm 4");

        res = Optional.absent();

     else 

        log.error("Strange situation, you have to check log-file");
        res = null;

    

    // if abonent data was received in one minute and after abonent shut down connection, they will stay in DStream forever
    // after some period forced to save them
    if (res != null && res.isPresent()) 
        res.get().stream().filter(z -> Math.abs(java.time.Duration.between(z.getAggregateGroup(), LocalDateTime.now()).getSeconds() / 60) > FORCED_SAVE_INTERVAL).forEach(z -> z.setAggregateReady(true));
    

    return res;
;

【讨论】:

以上是关于用于时间序列处理的 Spark 流(按时间间隔划分数据)的主要内容,如果未能解决你的问题,请参考以下文章

spark流检查点恢复非常非常慢

Spark流DStream RDD以获取文件名

Spark Sql:从时间戳按小时间隔分区

Spark Streaming vs. Structured Streaming

SparkStreaming(源码阅读十二)

计算机体系的划分