CPLEX、Gurobi 和 FICO Xpress 之间的性能差异的解释使用内点法(障碍)没有交叉?
Posted
技术标签:
【中文标题】CPLEX、Gurobi 和 FICO Xpress 之间的性能差异的解释使用内点法(障碍)没有交叉?【英文标题】:Explanation of difference in performance between CPLEX, Gurobi and FICO Xpress using interior point method (barrier) without crossover? 【发布时间】:2019-03-21 19:38:02 【问题描述】:我正在使用一个非常大的(随机)LP 使用没有交叉的障碍算法。我的模型是在 Pyomo 中实现的,我尝试使用 CPLEX、Gurobi 和 FICO Xpress 来解决它。 Pyomo 中的求解器设置如下:
对于 CPLEX:
opt = SolverFactory("cplex")
opt.options["lpmethod"] = 4
opt.options["barrier crossover"] = -1
results = opt.solve(instance)
对于古罗比:
opt = SolverFactory('gurobi_persistent')
opt.set_instance(instance)
opt.options["Crossover"]=0
opt.options["Method"]=2
results = opt.solve(instance, load_solutions=True)
results = opt.load_vars()
results = opt.load_duals()
对于 FICO Xpress:
opt = SolverFactory("xpress")
opt.options["defaultAlg"] = 4
opt.options["crossover"] = 0
results = opt.solve(instance)
所有求解器都能找到解决方案,但速度(非常)不同:
Gurobi 使用 337 次迭代在 4593 秒 (9.98262837e+11) 内找到次优解 FICO Xpress 使用 169 次迭代在 7981 秒 (9.98246410e+11) 内找到最优解 CPLEX 使用 258 次迭代在 40,178 秒 (9.98250954e+11) 内找到次优解我的问题是:为什么求解器之间存在如此巨大的差异(尤其是比较 CPLEX 和 Gurobi)?不同的障碍算法发生了什么?
CPLEX 的日志摘要:
IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer 12.8.0.0
Read time = 52.61 sec. (3283.43 ticks)
Objective sense : Minimize
Variables : 17684371
Objective nonzeros : 7976817
Linear constraints : 26929486 [Less: 25202826, Equal: 1726660]
Nonzeros : 83463204
RHS nonzeros : 621453
Tried aggregator 1 time.
DUAL formed by presolve
Aggregator has done 14545 substitutions...
LP Presolve eliminated 8512063 rows and 3459945 columns.
Reduced LP has 14209881 rows, 21009396 columns, and 61814653 nonzeros.
Presolve time = 148.20 sec. (209740.04 ticks)
Parallel mode: using up to 24 threads for barrier.
***NOTE: Found 243 dense columns.
Number of nonzeros in lower triangle of A*A' = 268787475
Elapsed ordering time = 17.45 sec. (10000.00 ticks)
Using Nested Dissection ordering
Total time for automatic ordering = 376.13 sec. (209058.23 ticks)
Summary statistics for Cholesky factor:
Threads = 24
Rows in Factor = 14210124
Integer space required = 145889976
Total non-zeros in factor = 12261481354
Total FP ops to factor = 39156639536792
Total time on 24 threads = 40177.89 sec. (62234738.71 ticks)
Barrier - Non-optimal: Objective = 9.9825095360e+11
Solution time = 40177.90 sec. Iterations = 258
Xpress 的日志摘要:
FICO Xpress Solver 64bit v8.5.0:
Problem Statistics
26929486 ( 0 spare) rows
17684371 ( 0 spare) structural columns
83463204 ( 0 spare) non-zero elements
Presolved problem has:
18426768 rows 14805105 cols 59881674 elements
Barrier cache sizes : L1=32K L2=20480K
Using AVX support
Cores per CPU (CORESPERCPU): 12
Barrier starts, using up to 24 threads, 12 cores
Matrix ordering - Dense cols.: 6776 NZ(L): 485925484 Flops: 273369311062
Barrier method finished in 7874 seconds
Optimal solution found
Barrier solved problem
169 barrier iterations in 7981s
Final objective : 9.982464100682021e+11
Max primal violation (abs / rel) : 1.612e-03 / 1.612e-03
Max dual violation (abs / rel) : 1.837e+02 / 7.381e+01
Max complementarity viol. (abs / rel) : 1.837e+02 / 1.675e-07
Gurobi 的日志摘要:
Gurobi 8.0.0:
Optimize a model with 26929485 rows, 17684370 columns and 83463203 nonzeros
Coefficient statistics:
Matrix range [1e-05, 4e+00]
Objective range [2e+00, 8e+06]
Bounds range [0e+00, 0e+00]
RHS range [1e-01, 2e+08]
Presolve removed 8527789 rows and 2871939 columns
Presolve time: 53.79s
Presolved: 18401696 rows, 14812431 columns, 59808411 nonzeros
Ordering time: 29.38s
Barrier statistics:
Dense cols : 4607
AA' NZ : 6.262e+07
Factor NZ : 5.722e+08 (roughly 18.0 GBytes of memory)
Factor Ops : 3.292e+11 (roughly 4 seconds per iteration)
Threads : 12
Barrier performed 337 iterations in 4592.92 seconds
Sub-optimal termination - objective 9.98262837e+11
【问题讨论】:
解决方案时间取决于实现。不确定是否可以获得比这更详细的答案,因为它需要了解底层的实现细节。请注意,逐个实例也存在很大差异(例如,请参阅here) 你写“实现”依赖是什么意思?你的意思是障碍算法是如何在三个不同的求解器中实现的?这三个实例的底层 lp 文件完全相同。 是的,确切地说:有几种设计选择并不明确,在某些条件下效果很好,而在其他条件下效果不佳。也可能存在其他差异,例如使用的数据结构、基本算法(例如使用哪种排序)、数字、预处理强度等。Here 是 Clp 的源代码,CPLEX 的前身,这说明了开发商业求解器所涉及的复杂性。 可以尝试减少 Cplex 的线程数吗? (检查您的内存使用情况)。您可能还需要考虑稍微扩展您的模型。 是的,我会试试的。注意到与 Gurobi 相比,CPLEX 使用了大约两倍的处理能力和内存。你是什么意思缩放?比如,将整个目标函数除以 1 000 000? 【参考方案1】:使用 CPLEX,因式分解的成本要高得多。
#FLOPS CPLEX ~3.92e+13
#FLOPS Xpress ~2.73e+11
#FLOPS Gurobi ~3.29e+11
我已经多次看到大型 LP 出现这种差异。在大多数情况下,CPLEX 做出了错误的决定,将对偶传递给优化器
DUAL formed by presolve
将 PreDual 参数设置为 -1 可以防止这种情况发生。
【讨论】:
以上是关于CPLEX、Gurobi 和 FICO Xpress 之间的性能差异的解释使用内点法(障碍)没有交叉?的主要内容,如果未能解决你的问题,请参考以下文章
Scipy.linprog 的 Gurobi 风格模型构建?