无法一次检测多个人脸
Posted
技术标签:
【中文标题】无法一次检测多个人脸【英文标题】:Unable to detect multiple faces at a time 【发布时间】:2019-05-23 03:01:14 【问题描述】:由于某种原因,我无法一次检测到多张面孔。它一次只检测一张脸。我该如何解决这个问题?我在下面添加了代码。我使用谷歌的 facenet 进行实时人脸识别。
在视频输出中,它一次只在一个面上创建一个边界框。但在控制台输出中,它可以计算出存在的面数是两个或两个以上。
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from scipy import misc
import cv2
import matplotlib.pyplot as plt
import numpy as np
import argparse
import facenet
import detect_face
import os
from os.path import join as pjoin
import sys
import time
import copy
import math
import pickle
from sklearn.svm import SVC
from sklearn.externals import joblib
#addded
#import reload
#reload(sys)
#sys.setdefaultencoding('utf8')
print('Creating networks and loading parameters')
with tf.Graph().as_default():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = detect_face.create_mtcnn(sess, './') #face detection
minsize = 20 # minimum size of face #minsize, threshold, factor used for detection
threshold = [0.6, 0.7, 0.7] # three steps's threshold
factor = 0.709 # scale factor
margin = 44
frame_interval = 3
batch_size = 1000
image_size = 182
input_image_size = 160
items = os.listdir("/Aryabhatta Robotics Internship/facenet-master/Real_time_face/ids/aligned")
#HumanNames = []
#for names in items:
#HumanNames.append(names)
#print(HumanNames)
#HumanNames = ['Alok','Siddhant','tesra','s01','s02','s03','s04','s05','s06','s07','s08','s09','s10','s11','s12','s13','s14','s15','s16','s17','s18','s19','s20'] #train human name, known face names
print('Loading feature extraction model')
modeldir = '/Aryabhatta Robotics Internship/facenet-master/Real_time_face/models/20180402-114759/20180402-114759.pb' #feature extraction mmodel
facenet.load_model(modeldir)
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
embedding_size = embeddings.get_shape()[1]
classifier_filename = '/Aryabhatta Robotics Internship/facenet-master/Real_time_face/models/my_classifier/my_classifier.pkl' #out own classifier
classifier_filename_exp = os.path.expanduser(classifier_filename)
with open(classifier_filename_exp, 'rb') as infile:
(model, class_names) = pickle.load(infile)#, encoding='latin1')
print('load classifier file-> %s' % classifier_filename_exp)
video_capture = cv2.VideoCapture(0)
c = 0
# #video writer
# fourcc = cv2.VideoWriter_fourcc(*'DIVX')
# out = cv2.VideoWriter('3F_0726.avi', fourcc, fps=30, frameSize=(640,480))
print('Start Recognition!')
prevTime = 0
while True: #infinite loop
ret, frame = video_capture.read() #video capture from webcam
frame = cv2.resize(frame, (0,0), fx=0.5, fy=0.5) #resize frame (optional)
curTime = time.time() # calc fps
timeF = frame_interval
if (c % timeF == 0):
find_results = []
if frame.ndim == 2:
frame = facenet.to_rgb(frame)
frame = frame[:, :, 0:3]
bounding_boxes, _ = detect_face.detect_face(frame, minsize, pnet, rnet, onet, threshold, factor)
nrof_faces = bounding_boxes.shape[0]
print('Detected_FaceNum: %d' % nrof_faces)
if nrof_faces > 0:
det = bounding_boxes[:, 0:4]
img_size = np.asarray(frame.shape)[0:2]
cropped = []
scaled = []
scaled_reshape = []
bb = np.zeros((nrof_faces,4), dtype=np.int32)
for i in range(nrof_faces):
print("faceno:" + str(i))
emb_array = np.zeros((1, embedding_size))
bb[i][0] = det[i][0]
bb[i][1] = det[i][1]
bb[i][2] = det[i][2]
bb[i][3] = det[i][3]
# inner exception
if bb[i][0] <= 0 or bb[i][1] <= 0 or bb[i][2] >= len(frame[0]) or bb[i][3] >= len(frame):
print('face is inner of range!')
continue
cropped.append(frame[bb[i][1]:bb[i][3], bb[i][0]:bb[i][2], :])
cropped[0] = facenet.flip(cropped[0], False)
scaled.append(misc.imresize(cropped[0], (image_size, image_size), interp='bilinear'))
scaled[0] = cv2.resize(scaled[0], (input_image_size,input_image_size),
interpolation=cv2.INTER_CUBIC)
scaled[0] = facenet.prewhiten(scaled[0])
scaled_reshape.append(scaled[0].reshape(-1,input_image_size,input_image_size,3))
feed_dict = images_placeholder: scaled_reshape[0], phase_train_placeholder: False
emb_array[0, :] = sess.run(embeddings, feed_dict=feed_dict)
#print(emb_array)
threshold_accuracy = 155
predictions = model.predict_proba(emb_array)
#print(predictions)
for i in range(len(predictions[0])):
predictions[0][i] = np.exp(18*predictions[0][i])
#print(predictions)
best_class_indices = np.argmax(predictions, axis=1)
print(best_class_indices)
print("next")
best_class_probabilities = predictions[np.arange(len(best_class_indices)), best_class_indices]
print(best_class_probabilities)
for i in range(len(best_class_indices)):
print('%4d %s: %.3f' % (i, class_names[best_class_indices[i]], best_class_probabilities[i]))
cv2.rectangle(frame, (bb[i][0], bb[i][1]), (bb[i][2], bb[i][3]), (0, 255, 0), 2) #boxing face
#plot result idx under box
text_x = bb[i][0]
text_y = bb[i][3] + 20
# print('result: ', best_class_indices[0])
if best_class_probabilities[i] > threshold_accuracy :
#result_names = HumanNames[best_class_indices[0]]
cv2.putText(frame, class_names[best_class_indices[i]], (text_x, text_y), cv2.FONT_HERSHEY_COMPLEX_SMALL,
1, (0, 0, 255), thickness=1, lineType=2)
else:
cv2.putText(frame, 'Unknown', (text_x, text_y), cv2.FONT_HERSHEY_COMPLEX_SMALL,
1, (0, 0, 255), thickness=1, lineType=2)
#for H_i in HumanNames:
#if HumanNames[best_class_indices[0]] == H_i and best_class_probabilities[0] > threshold_accuracy :
#flag = 1
#result_names = HumanNames[best_class_indices[0]]
#cv2.putText(frame, result_names, (text_x, text_y), cv2.FONT_HERSHEY_COMPLEX_SMALL,
#1, (0, 0, 255), thickness=1, lineType=2)
#else:
#cv2.putText(frame, 'Unknown', (text_x, text_y), cv2.FONT_HERSHEY_COMPLEX_SMALL,
# 1, (0, 0, 255), thickness=1, lineType=2)
else:
print('Unable to align')
sec = curTime - prevTime
prevTime = curTime
fps = 1 / (sec)
str1 = 'FPS: %2.3f' % fps
text_fps_x = len(frame[0]) - 150
text_fps_y = 20
cv2.putText(frame, str1, (text_fps_x, text_fps_y),
cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 0), thickness=1, lineType=2)
# c+=1
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
# #video writer
# out.release()
cv2.destroyAllWindows()
【问题讨论】:
【参考方案1】:阈值精度应在0 to 1
之间。确保您的阈值准确度必须为>0.60
。
【讨论】:
【参考方案2】:from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from scipy import misc
from skimage.transform import resize
import cv2
import numpy as np
import facenet
import detect_face
import os
import time
import pickle
import sys
img_path='download.jpeg'
modeldir = './model/20170511-185253.pb'
classifier_filename = './class/classifier.pkl'
npy='./npy'
train_img="./train_img"
with tf.Graph().as_default():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = detect_face.create_mtcnn(sess, npy)
minsize = 10 # minimum size of face
threshold = [0.6, 0.7, 0.7] # three steps's threshold
factor = 1 # scale factor
margin = 44
frame_interval = 3
batch_size = 1000
image_size = 182
input_image_size = 160
HumanNames = os.listdir(train_img)
HumanNames.sort()
print('Loading feature extraction model')
facenet.load_model(modeldir)
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
embedding_size = embeddings.get_shape()[1]
classifier_filename_exp = os.path.expanduser(classifier_filename)
with open(classifier_filename_exp, 'rb') as infile:
(model, class_names) = pickle.load(infile)
# video_capture = cv2.VideoCapture("akshay_mov.mp4")
c = 0
print('Start Recognition!')
prevTime = 0
# ret, frame = video_capture.read()
frame = cv2.imread(img_path,0)
frame = cv2.resize(frame, (0,0), fx=0.5, fy=0.5) #resize frame (optional)
curTime = time.time()+1 # calc fps
timeF = frame_interval
if (c % timeF == 0):
find_results = []
if frame.ndim == 2:
frame = facenet.to_rgb(frame)
frame = frame[:, :, 0:3]
print(1)
bounding_boxes, _ = detect_face.detect_face(frame, minsize, pnet, rnet, onet, threshold, factor)
nrof_faces = bounding_boxes.shape[0]
print('Face Detected: %d' % nrof_faces)
if nrof_faces > 0:
det = bounding_boxes[:, 0:4]
img_size = np.asarray(frame.shape)[0:2]
cropped = []
scaled = []
scaled_reshape = []
bb = np.zeros((nrof_faces,4), dtype=np.int32)
for i in range(nrof_faces):
emb_array = np.zeros((1, embedding_size))
bb[i][0] = det[i][0]
bb[i][1] = det[i][1]
bb[i][2] = det[i][2]
bb[i][3] = det[i][3]
# inner exception
if bb[i][0] <= 0 or bb[i][1] <= 0 or bb[i][2] >= len(frame[0]) or bb[i][3] >= len(frame):
print('face is too close')
continue
cropped.append(frame[bb[i][1]:bb[i][3], bb[i][0]:bb[i][2], :])
cropped[i] = facenet.flip(cropped[i], False)
scaled.append(resize(cropped[i], (image_size, image_size), anti_aliasing=True))
scaled[i] = cv2.resize(scaled[i], (input_image_size,input_image_size),
interpolation=cv2.INTER_CUBIC)
scaled[i] = facenet.prewhiten(scaled[i])
scaled_reshape.append(scaled[i].reshape(-1,input_image_size,input_image_size,3))
feed_dict = images_placeholder: scaled_reshape[i], phase_train_placeholder: False
emb_array[0, :] = sess.run(embeddings, feed_dict=feed_dict)
predictions = model.predict_proba(emb_array)
print(predictions)
best_class_indices = np.argmax(predictions, axis=1)
# print(best_class_indices)
best_class_probabilities = predictions[np.arange(len(best_class_indices)), best_class_indices]
print(best_class_probabilities)
cv2.rectangle(frame, (bb[i][0], bb[i][1]), (bb[i][2], bb[i][3]), (0, 255, 0), 2) #boxing face
#plot result idx under box
text_x = bb[i][0]
text_y = bb[i][3] + 20
print('Result Indices: ', best_class_indices[0])
print(HumanNames)
for H_i in HumanNames:
# print(H_i)
if HumanNames[best_class_indices[0]] == H_i:
result_names = HumanNames[best_class_indices[0]]
else:
print('Unable to align')
cv2.imshow('Image', frame)
if cv2.waitKey(100) & 0xFF == ord('q'):
sys.exit("Thanks")
cv2.destroyAllWindows()
【讨论】:
您能解释一下您的解决方案吗?以上是关于无法一次检测多个人脸的主要内容,如果未能解决你的问题,请参考以下文章
利用opencv带你玩转人脸识别-中篇(人脸检测,检测多个,视频检测快速入门)
Python+OpenCV 简单实现人脸检测多个和人脸识别 2(附代码)