Kerastuner Randomsearch:TypeError:('关键字参数不理解:','激活')
Posted
技术标签:
【中文标题】Kerastuner Randomsearch:TypeError:(\'关键字参数不理解:\',\'激活\')【英文标题】:Kerastuner Randomsearch: TypeError: ('Keyword argument not understood:', 'activation')Kerastuner Randomsearch:TypeError:('关键字参数不理解:','激活') 【发布时间】:2020-08-12 09:23:45 【问题描述】:使用 Google Colab,我尝试使用 Kerastuner 的 Randomsearch 来为我的用例找到最佳 CNN。
在我看来,一切都应该正确设置,但由于某种原因我总是得到
TypeError: ('Keyword argument not understood:', 'activation')
每当声明我的 RandomSearch。
声明我的模型的功能:
from tensorflow.keras import datasets, layers, models
def model_declaration(hp):
cnn = models.Sequential([
# Filtering & Pooling Layers
layers.Conv2D(
filters=hp.Int('filter1', min_value = 16, max_value = 128, step = 16), # Optimizing with filters from 16 to 128 in steps of 16
kernel_size = hp.Choice('kernel1', values=[3,6]), # Optimizing kernel size from 3 to 6
activation ='relu',
input_shape = (48,48,1) # always the same
),
layers.MaxPooling2D(pool_size=hp.Int('max_pooling_1', min_value = 2, max_value = 4, step = 16), activation = 'relu'),
layers.Conv2D(
filters=hp.Int('filter2', min_value = 16, max_value = 128, step = 16 ), # Optimizing with filters from 16 to 128 in steps of 16
kernel_size = hp.Choice('kernel2', values=[3,6]), # Optimizing kernel size from 3 to 6
activation = 'relu'),
layers.Conv2D(
filters=hp.Int('filter3', min_value = 8, max_value = 256, step = 16 ), # Optimizing with filters from 16 to 128 in steps of 16
kernel_size = hp.Choice('kernel3', values=[3,6]), # Optimizing kernel size from 3 to 6
activation = 'relu'
),
layers.Flatten(), # Flattening
])
for i in range(hp.Int('dense_layers', 2, 10)):
cnn.add(layers.Dense(units=hp.Int('dense_parameters'), min_value = 16, max_value = 128, step = 16), activation=hp.Choice(['relu', 'tanh', 'sigmoid']))
model.compile(optimizer=keras.optimizers.Adam(hp.Choice('learning_rate', values=[1e-1, 1e-2, 1e-3, 1e-4])),
loss = 'sparse_categorical_crossentropy',
metrics = ['accuracy'])
return model
这是我的随机搜索声明:
import kerastuner
from kerastuner import RandomSearch
from kerastuner.engine.hyperparameters import HyperParameter
random_search = RandomSearch(model_declaration, objective='val_accuracy', max_trials=5, directory='output', project_name='CNN best output')
Tensorflow 版本为 2.2.0-rc3 Kerastuner 版本是 1.0.1 Keras 版本是 2.3.0-tf
提前感谢您的帮助,因为我对这个主题相当陌生,所以我真的很挣扎。
【问题讨论】:
【参考方案1】:MaxPooling2D
层没有activation
参数。检查Keras Documentation 也可以查看层规范。
【讨论】:
【参考方案2】:MaxPooling2D 没有激活。因为 MaxPooling 是一个最小化数据的层。它没有激活,因为它遵循某种算法,该算法采用池大小并为您选择的每个区域采用最大值。
【讨论】:
以上是关于Kerastuner Randomsearch:TypeError:('关键字参数不理解:','激活')的主要内容,如果未能解决你的问题,请参考以下文章
使用 Keras Tuner RandomSearch 错误进行超参数调优
将 TensorBoard 与 Keras Tuner 一起使用
贝叶斯优化(Bayesian Optimization)深入理解
使用 Keras Tuner 的未知度量 val_accuracy
ValueError: need at most 63 handles, got a sequence of length 65