使用混淆矩阵`data`和`reference`的错误应该是具有相同水平的因素
Posted
技术标签:
【中文标题】使用混淆矩阵`data`和`reference`的错误应该是具有相同水平的因素【英文标题】:error using confusionMatrix `data` and `reference` should be factors with the same levels 【发布时间】:2020-08-17 02:48:51 【问题描述】:我是第一次使用 R(在 R 工作室中),如有任何愚蠢的错误,我深表歉意。
我正在运行机器学习模型。在我的脚本中,我收到以下错误,
Error: `data` and `reference` should be factors with the same levels.
4. stop("`data` and `reference` should be factors with the same levels.", call. = FALSE)
3. confusionMatrix.default(Y.pr, Y.ob)
当我踏入confusionMatrix时,我有点困惑。
数据(我的 Y.pr)变量存储在数据部分下,而引用(我的 Y.ob)存储在值下。当我点击参考它显示
num [1:8593] 0 0 1 1 1 0 0 0 1 1 ...
我展开后的数据变量如下所示。
Large matrix (8593 elements, 604.6 kb)
- attr(*, "dimnames")= List of 2
..$ : chr [1:8593] "34371" "34372" "34373" "34374" ...
..$ : NULL
这些对我来说都没有任何意义。我猜是 Null 导致了问题?
更新
使用相同的数据,我能够在 Python 中运行一个完全正常工作的模型
更新结束
【问题讨论】:
该错误表明您需要两个变量作为具有相同级别数的因子。据我所知,您有课程num
和chr
。我的建议是您提供一个最小的可重现示例供我们研究。
您是否检查过级别是否相同——您的值是零还是一?您是否尝试过将Y.ob
和Y.pr
设置为factor
作为其中之一(不确定哪个)是数字。例如,对于这个示例数据Y.pr = sample(0:1, 10, TRUE); Y.ob = sample(0:1, 10, TRUE)
,我们使用caret::confusionMatrix(Y.pr, Y.ob)
会得到相同的错误。设置为我们不caret::confusionMatrix(factor(Y.pr), factor(Y.ob))
的因素后
ps 请将dput(Y.pr[1:10])
和dput(Y.obs[1:10])
的结果添加到您的问题中可能会有用。也是confusionMatrix
来自caret
或??
【参考方案1】:
我将从?confusionMatrix
中的示例着手解决您的错误,然后通过一种方法从中恢复。
前面
此答案逐步解决问题的方法是将级别分配给非factor
变量。如果您确切地知道相对于pred
的数字水平表示什么,那么您的临床研究就结束了:任何结果都是可疑的和站不住脚的。答案的其余部分假设您确定级别(或者您只是在玩,并且没有正式的研究或调查或任何与此数据有关的东西)。即使原始数据不是factor
s,验证“1”和“2”(或任何数字)的含义是关键步骤。
演示
library(caret)
lvs <- c("normal", "abnormal")
truth <- factor(rep(lvs, times = c(86, 258)),
levels = rev(lvs))
pred <- factor(
c(
rep(lvs, times = c(54, 32)),
rep(lvs, times = c(27, 231))),
levels = rev(lvs))
head(truth)
# [1] normal normal normal normal normal normal
# Levels: abnormal normal
head(pred)
# [1] normal normal normal normal normal normal
# Levels: abnormal normal
正常(理想)执行:
confusionMatrix(pred, truth)
# Confusion Matrix and Statistics
# Reference
# Prediction abnormal normal
# abnormal 231 32
# normal 27 54
#
# Accuracy : 0.8285
# 95% CI : (0.7844, 0.8668)
# No Information Rate : 0.75
# P-Value [Acc > NIR] : 0.0003097
#
# Kappa : 0.5336
# Mcnemar's Test P-Value : 0.6025370
#
# Sensitivity : 0.8953
# Specificity : 0.6279
# Pos Pred Value : 0.8783
# Neg Pred Value : 0.6667
# Prevalence : 0.7500
# Detection Rate : 0.6715
# Detection Prevalence : 0.7645
# Balanced Accuracy : 0.7616
#
# 'Positive' Class : abnormal
但是如果第二个参数不是一个因素呢?
truth_num <- as.integer(truth)
head(truth_num)
# [1] 2 2 2 2 2 2
confusionMatrix(pred, truth_num)
# Error: `data` and `reference` should be factors with the same levels.
修复
我们需要做的是将truth_num
带回一个因素。
首先,理论:如果它在某个点是 factor
并以某种方式转换为 integer
,那么它是一堆 1 和 2(最初是其级别上的索引)。如果它从来都不是一个因素,它可能是任何数字,真的,但底线是:我们知道哪个(整数)是哪个(级别)吗?如果您猜错了,那么您的测试将给出绝对错误的结果(没有错误/警告)。
table(pred)
# pred
# abnormal normal
# 263 81
table(truth_num)
# truth_num
# 1 2
# 258 86
仅查看相对比例建议truth_num
的级别应该与c("abnormal", "normal")
相同。 (但请再次阅读我关于追逐结果的重要说明;不要相信比例,请返回源数据以找出哪个是哪个。)这就是我们设置它的方式。从索引到因子有几种方法,这里有两种:
### one way
truth_num_fac <- factor(truth_num)
levels(truth_num_fac)
# [1] "1" "2"
head(truth_num_fac)
# [1] 2 2 2 2 2 2
# Levels: 1 2
levels(truth_num_fac) <- levels(pred)
head(truth_num_fac)
# [1] normal normal normal normal normal normal
# Levels: abnormal normal
### another way
dput(head(pred))
# structure(c(2L, 2L, 2L, 2L, 2L, 2L), .Label = c("abnormal", "normal"
# ), class = "factor")
truth_num_fac <- structure(truth_num, .Label = levels(pred), class = "factor")
head(truth_num_fac)
# [1] normal normal normal normal normal normal
# Levels: abnormal normal
不管怎样,测试现在都可以了。
confusionMatrix(pred, truth_num_fac)
# Confusion Matrix and Statistics
# Reference
# Prediction abnormal normal
# abnormal 231 32
# normal 27 54
#
# Accuracy : 0.8285
# 95% CI : (0.7844, 0.8668)
# No Information Rate : 0.75
# P-Value [Acc > NIR] : 0.0003097
#
# Kappa : 0.5336
# Mcnemar's Test P-Value : 0.6025370
#
# Sensitivity : 0.8953
# Specificity : 0.6279
# Pos Pred Value : 0.8783
# Neg Pred Value : 0.6667
# Prevalence : 0.7500
# Detection Rate : 0.6715
# Detection Prevalence : 0.7645
# Balanced Accuracy : 0.7616
#
# 'Positive' Class : abnormal
#
如果...
级别正确,但您会看到以下警告:
confusionMatrix(pred, truth_num_fac)
# Warning in confusionMatrix.default(pred, truth_num_fac) :
# Levels are not in the same order for reference and data. Refactoring data to match.
# Confusion Matrix and Statistics
### ...
这表明您的等级顺序不同。修复并不难:
levels(pred)
# [1] "abnormal" "normal"
levels(truth_num_fac)
# [1] "normal" "abnormal" <---- abnormal should be first, according to pred
truth_num_fac <- relevel(truth_num_fac, "abnormal")
confusionMatrix(pred, truth_num_fac)
# Confusion Matrix and Statistics
级别不正确?尽管您的测试结果会完全不同,但您不会收到任何错误或警告;这并不意味着你应该追求想要的结果,但如果它们大错特错,那就值得关注了:
### setup for backwards data
truth_num_fac_backwards <- structure(truth_num, .Label = rev(levels(pred)), class = "factor")
truth_num_fac_backwards <- relevel(truth_num_fac_backwards, "abnormal")
head(truth_num_fac_backwards)
# [1] abnormal abnormal abnormal abnormal abnormal abnormal
# Levels: abnormal normal
confusionMatrix(pred, truth_num_fac_backwards)
# Confusion Matrix and Statistics
# Reference
# Prediction abnormal normal
# abnormal 32 231
# normal 54 27
#
# Accuracy : 0.1715 <----- OUCH
# 95% CI : (0.1332, 0.2156)
# No Information Rate : 0.75
# P-Value [Acc > NIR] : 1
#
# Kappa : -0.3103
# Mcnemar's Test P-Value : <2e-16
#
# Sensitivity : 0.37209
# Specificity : 0.10465
# Pos Pred Value : 0.12167
# Neg Pred Value : 0.33333
# Prevalence : 0.25000
# Detection Rate : 0.09302
# Detection Prevalence : 0.76453
# Balanced Accuracy : 0.23837
#
# 'Positive' Class : abnormal
#
解决此问题的正确方法是返回并验证哪个级别是哪个级别。可能是你做对了,结果告诉你事情不是很好的匹配。任何其他修复都会(在我看来)追逐结果:确保您第一次获得正确的数据,不要更改数据以匹配您的预期结果。
我尝试将数字向量转换为factor
,但levels(...)
返回NULL
。
这可能是因为您的非数字向量不是factor
,而是character
。这个修复应该很容易:
### setup for fake character data
pred_chr <- pred
pred_chr <- as.character(pred)
head(pred_chr)
# [1] "normal" "normal" "normal" "normal" "normal" "normal"
### the remedy
pred_chr_fac <- factor(pred_chr)
head(pred_chr_fac)
# [1] normal normal normal normal normal normal
# Levels: abnormal normal
levels(pred_chr_fac)
# [1] "abnormal" "normal"
【讨论】:
以上是关于使用混淆矩阵`data`和`reference`的错误应该是具有相同水平的因素的主要内容,如果未能解决你的问题,请参考以下文章
混淆矩阵 - 错误:`data` 和 `reference` 应该是具有相同级别的因素
R:RF模型中的混淆矩阵返回错误:data`和`reference`应该是具有相同水平的因素