用 numpy 编写一个 train_test_split 函数
Posted
技术标签:
【中文标题】用 numpy 编写一个 train_test_split 函数【英文标题】:writing a train_test_split function with numpy 【发布时间】:2016-06-26 05:25:45 【问题描述】:我正在尝试使用 numpy 而不是使用 sklearn 的 train_test_split 函数编写我自己的训练测试拆分函数。我将数据分成 70% 的训练和 30% 的测试。我正在使用来自 sklearn 的波士顿住房数据集。
这是数据的形状:
housing_features.shape #(506,13) where 506 is sample size and it has 13 features.
这是我的代码:
city_data = datasets.load_boston()
housing_prices = city_data.target
housing_features = city_data.data
def shuffle_split_data(X, y):
split = np.random.rand(X.shape[0]) < 0.7
X_Train = X[split]
y_Train = y[split]
X_Test = X[~split]
y_Test = y[~split]
print len(X_Train), len(y_Train), len(X_Test), len(y_Test)
return X_Train, y_Train, X_Test, y_Test
try:
X_train, y_train, X_test, y_test = shuffle_split_data(housing_features, housing_prices)
print "Successful"
except:
print "Fail"
我得到的打印输出是:
362 362 144 144
"Successful"
但我知道这并不成功,因为当我再次运行它时,我得到了不同的长度数字,而不是仅使用 SKlearn 的训练测试功能,X_train 的长度总是得到 354。
#correct output
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(housing_features, housing_prices, test_size=0.3, random_state=42)
print len(X_train)
#354
我缺少什么我的功能?
【问题讨论】:
【参考方案1】:因为您使用的是np.random.rand
,它会为您提供随机数,对于非常大的数字,0.7 限制将接近 70%。您可以使用 np.percentile
来获得 70% 的值,然后像您所做的那样与该值进行比较:
def shuffle_split_data(X, y):
arr_rand = np.random.rand(X.shape[0])
split = arr_rand < np.percentile(arr_rand, 70)
X_train = X[split]
y_train = y[split]
X_test = X[~split]
y_test = y[~split]
print len(X_Train), len(y_Train), len(X_Test), len(y_Test)
return X_train, y_train, X_test, y_test
编辑
或者,您可以使用np.random.choice
选择具有所需数量的索引。对于您的情况:
np.random.choice(range(X.shape[0]), int(0.7*X.shape[0]))
【讨论】:
另一方面,我应该使用随机数吗?因为 X_train 不应该对应于 y_train 值吗?或者即使在使用随机时也能保持这种结构? @jxn 你应该使用随机,因为在原始train_test_split
你有random_state
这意味着随机输出。当然X_train
对应于y_train
,因为您为它们使用了相同的掩码。
@jxn 你也可以使用np.random.choice
以上是关于用 numpy 编写一个 train_test_split 函数的主要内容,如果未能解决你的问题,请参考以下文章