如何使用 PIL 确定具有共享值的像素区域
Posted
技术标签:
【中文标题】如何使用 PIL 确定具有共享值的像素区域【英文标题】:How to determine regions of pixels with a shared value using PIL 【发布时间】:2012-09-01 13:28:13 【问题描述】:我需要将图像划分为 RGB 值通过特定测试的像素区域。 我可以扫描图像并检查每个像素的值,但是将它们聚集成区域然后获取这些区域坐标(x、y、宽度、高度)的部分让我完全黑暗:) 这是我到目前为止的代码
from PIL import Image
def detectRedRegions(PILImage):
image = PILImage.load()
width, height = PILImage.size
reds = []
h = 0
while h < height:
w = 0
while w < width:
px = image[w, h]
if is_red(px):
reds.append([w, h])
# Here's where I'm being clueless
w +=1
h +=1
我阅读了大量关于集群的文章,但无法完全理解这个主题,任何适合我需要的代码示例都会很棒(希望能启发
谢谢!
【问题讨论】:
你到底想做什么?通常,具有特定颜色的区域不会是正方形,而是具有任意形状(尽管以某种方式连接),因此通过像 (x, y) 这样的简单元组来查找和定义区域将是一个挑战, 宽度, 高度)。 我知道区域不会是正方形的 :) 我的想法(很抱歉不清楚这一点)是在区域周围设置边界框(应该是准确的满足我的需要) 【参考方案1】:[编辑]
虽然以下解决方案有效,但可以做得更好。这是一个名称更好、性能更好的版本:
from itertools import product
from PIL import Image, ImageDraw
def closed_regions(image, test):
"""
Return all closed regions in image who's pixels satisfy test.
"""
pixel = image.load()
xs, ys = map(xrange, image.size)
neighbors = dict((xy, set([xy])) for xy in product(xs, ys) if test(pixel[xy]))
for a, b in neighbors:
for cd in (a + 1, b), (a, b + 1):
if cd in neighbors:
neighbors[a, b].add(cd)
neighbors[cd].add((a, b))
seen = set()
def component(node, neighbors=neighbors, seen=seen, see=seen.add):
todo = set([node])
next_todo = todo.pop
while todo:
node = next_todo()
see(node)
todo |= neighbors[node] - seen
yield node
return (set(component(node)) for node in neighbors if node not in seen)
def boundingbox(coordinates):
"""
Return the bounding box that contains all coordinates.
"""
xs, ys = zip(*coordinates)
return min(xs), min(ys), max(xs), max(ys)
def is_black_enough(pixel):
r, g, b = pixel
return r < 10 and g < 10 and b < 10
if __name__ == '__main__':
image = Image.open('some_image.jpg')
draw = ImageDraw.Draw(image)
for rect in disjoint_areas(image, is_black_enough):
draw.rectangle(boundingbox(region), outline=(255, 0, 0))
image.show()
与下面的disjoint_areas()
不同,closed_regions()
返回像素坐标集而不是它们的边界框。
另外,如果我们使用flooding 代替连通分量算法,我们可以让它更简单,速度大约提高一倍:
from itertools import chain, product
from PIL import Image, ImageDraw
flatten = chain.from_iterable
def closed_regions(image, test):
"""
Return all closed regions in image who's pixel satisfy test.
"""
pixel = image.load()
xs, ys = map(xrange, image.size)
todo = set(xy for xy in product(xs, ys) if test(pixel[xy]))
while todo:
region = set()
edge = set([todo.pop()])
while edge:
region |= edge
todo -= edge
edge = todo.intersection(
flatten(((x - 1, y), (x, y - 1), (x + 1, y), (x, y + 1)) for x, y in edge))
yield region
# rest like above
它的灵感来自Eric S. Raymond's version of floodfill。
[/编辑]
也许可以使用floodfill,但我喜欢这样:
from collections import defaultdict
from PIL import Image, ImageDraw
def connected_components(edges):
"""
Given a graph represented by edges (i.e. pairs of nodes), generate its
connected components as sets of nodes.
Time complexity is linear with respect to the number of edges.
"""
neighbors = defaultdict(set)
for a, b in edges:
neighbors[a].add(b)
neighbors[b].add(a)
seen = set()
def component(node, neighbors=neighbors, seen=seen, see=seen.add):
unseen = set([node])
next_unseen = unseen.pop
while unseen:
node = next_unseen()
see(node)
unseen |= neighbors[node] - seen
yield node
return (set(component(node)) for node in neighbors if node not in seen)
def matching_pixels(image, test):
"""
Generate all pixel coordinates where pixel satisfies test.
"""
width, height = image.size
pixels = image.load()
for x in xrange(width):
for y in xrange(height):
if test(pixels[x, y]):
yield x, y
def make_edges(coordinates):
"""
Generate all pairs of neighboring pixel coordinates.
"""
coordinates = set(coordinates)
for x, y in coordinates:
if (x - 1, y - 1) in coordinates:
yield (x, y), (x - 1, y - 1)
if (x, y - 1) in coordinates:
yield (x, y), (x, y - 1)
if (x + 1, y - 1) in coordinates:
yield (x, y), (x + 1, y - 1)
if (x - 1, y) in coordinates:
yield (x, y), (x - 1, y)
yield (x, y), (x, y)
def boundingbox(coordinates):
"""
Return the bounding box of all coordinates.
"""
xs, ys = zip(*coordinates)
return min(xs), min(ys), max(xs), max(ys)
def disjoint_areas(image, test):
"""
Return the bounding boxes of all non-consecutive areas
who's pixels satisfy test.
"""
for each in connected_components(make_edges(matching_pixels(image, test))):
yield boundingbox(each)
def is_black_enough(pixel):
r, g, b = pixel
return r < 10 and g < 10 and b < 10
if __name__ == '__main__':
image = Image.open('some_image.jpg')
draw = ImageDraw.Draw(image)
for rect in disjoint_areas(image, is_black_enough):
draw.rectangle(rect, outline=(255, 0, 0))
image.show()
在这里,同时满足is_black_enough()
的相邻像素对被解释为图中的边。此外,每个像素都被视为自己的邻居。由于这种重新解释,我们可以将连通分量算法用于图,这很容易实现。结果是所有像素满足is_black_enough()
的区域的bounding box的序列。
【讨论】:
【参考方案2】:您想要的是图像处理中的区域标记或连通分量检测。 scipy.ndimage 包中提供了一个实现。 因此,如果您安装了 numpy + scipy,则以下内容应该可以工作
import numpy as np
import scipy.ndimage as ndi
import Image
image = Image.load()
# convert to numpy array (no data copy done since both use buffer protocol)
image = np.asarray(image)
# generate a black and white image marking red pixels as 1
bw = is_red(image)
# labeling : each region is associated with an int
labels, n = ndi.label(bw)
# provide bounding box for each region in the form of tuples of slices
objects = ndi.find_objects(labels)
【讨论】:
以上是关于如何使用 PIL 确定具有共享值的像素区域的主要内容,如果未能解决你的问题,请参考以下文章