在 R 中拟合正态分布

Posted

技术标签:

【中文标题】在 R 中拟合正态分布【英文标题】:Fitting a normal distribution in R 【发布时间】:2017-02-19 02:13:44 【问题描述】:

我正在使用以下代码来拟合正态分布。 “b”的数据集链接(太大而无法直接发布)是:

link for b

setwd("xxxxxx")
library(fitdistrplus)

require(MASS)
tazur <-read.csv("b", header= TRUE, sep=",")
claims<-tazur$b
a<-log(claims)
plot(hist(a))

绘制直方图后,看起来正态分布应该很合适。

f1n <- fitdistr(claims,"normal")
summary(f1n)

#Length Class  Mode   
#estimate 2      -none- numeric
#sd       2      -none- numeric
#vcov     4      -none- numeric
#n        1      -none- numeric
#loglik   1      -none- numeric

plot(f1n)

xy.coords(x, y, xlabel, ylabel, log) 中的错误:

'x' 是一个列表,但没有组件 'x' 和 'y'

当我尝试绘制拟合分布时出现上述错误,甚至 f1n 的汇总统计信息都已关闭。

不胜感激。

【问题讨论】:

m &lt;- mean(claims); s &lt;- sd(claims) 【参考方案1】:

回顾之前的答案

在上一个答案中,我没有提到两种方法之间的区别。一般来说,如果我们选择最大似然推断,我建议使用MASS::fitdistr,因为对于许多基本分布,它执行精确推断而不是数值优化。 ?fitdistr 的文档说得很清楚:

For the Normal, log-Normal, geometric, exponential and Poisson
distributions the closed-form MLEs (and exact standard errors) are
used, and ‘start’ should not be supplied.

For all other distributions, direct optimization of the
log-likelihood is performed using ‘optim’.  The estimated standard
errors are taken from the observed information matrix, calculated
by a numerical approximation.  For one-dimensional problems the
Nelder-Mead method is used and for multi-dimensional problems the
BFGS method, unless arguments named ‘lower’ or ‘upper’ are
supplied (when ‘L-BFGS-B’ is used) or ‘method’ is supplied
explicitly.

另一方面,fitdistrplus::fitdist 总是以数字方式执行推理,即使存在精确推理。当然,fitdist 的优势在于可以使用更多的推理原理:

Fit of univariate distributions to non-censored data by maximum
likelihood (mle), moment matching (mme), quantile matching (qme)
or maximizing goodness-of-fit estimation (mge).

本回答的目的

这个答案将探索正态分布的精确推断。它会有理论的味道,但没有可能性原理的证明;只给出结果。基于这些结果,我们编写了自己的 R 函数进行精确推理,可以与 MASS::fitdistr 进行比较。另一方面,为了与fitdistrplus::fitdist 进行比较,我们使用optim 在数值上最小化负对数似然函数。

这是学习统计和optim 的相对高级用法的绝佳机会。为方便起见,我将估计尺度参数:方差,而不是标准误差。


正态分布的精确推断


自己编写推理函数

下面的代码注释很好。有一个开关exact。如果设置FALSE,则选择数值解。

## fitting a normal distribution
fitnormal <- function (x, exact = TRUE) 
  if (exact) 
    ################################################
    ## Exact inference based on likelihood theory ##
    ################################################
    ## minimum negative log-likelihood (maximum log-likelihood) estimator of `mu` and `phi = sigma ^ 2`
    n <- length(x)
    mu <- sum(x) / n
    phi <- crossprod(x - mu)[1L] / n  # (a bised estimator, though)
    ## inverse of Fisher information matrix evaluated at MLE
    invI <- matrix(c(phi, 0, 0, phi * phi), 2L,
                   dimnames = list(c("mu", "sigma2"), c("mu", "sigma2")))
    ## log-likelihood at MLE
    loglik <- -(n / 2) * (log(2 * pi * phi) + 1)
    ## return
    return(list(theta = c(mu = mu, sigma2 = phi), vcov = invI, loglik = loglik, n = n))
    
  else 
    ##################################################################
    ## Numerical optimization by minimizing negative log-likelihood ##
    ##################################################################
    ## negative log-likelihood function
    ## define `theta = c(mu, phi)` in order to use `optim`
    nllik <- function (theta, x) 
      (length(x) / 2) * log(2 * pi * theta[2]) + crossprod(x - theta[1])[1] / (2 * theta[2])
      
    ## gradient function (remember to flip the sign when using partial derivative result of log-likelihood)
    ## define `theta = c(mu, phi)` in order to use `optim`
    gradient <- function (theta, x) 
      pl2pmu <- -sum(x - theta[1]) / theta[2]
      pl2pphi <- -crossprod(x - theta[1])[1] / (2 * theta[2] ^ 2) + length(x) / (2 * theta[2])
      c(pl2pmu, pl2pphi)
      
    ## ask `optim` to return Hessian matrix by `hessian = TRUE`
    ## use "..." part to pass `x` as additional / further argument to "fn" and "gn"
    ## note, we want `phi` as positive so box constraint is used, with "L-BFGS-B" method chosen
    init <- c(sample(x, 1), sample(abs(x) + 0.1, 1))  ## arbitrary valid starting values
    z <- optim(par = init, fn = nllik, gr = gradient, x = x, lower = c(-Inf, 0), method = "L-BFGS-B", hessian = TRUE)
    ## post processing ##
    theta <- z$par
    loglik <- -z$value  ## flip the sign to get log-likelihood
    n <- length(x)
    ## Fisher information matrix (don't flip the sign as this is the Hessian for negative log-likelihood)
    I <- z$hessian / n  ## remember to take average to get mean
    invI <- solve(I, diag(2L))  ## numerical inverse
    dimnames(invI) <- list(c("mu", "sigma2"), c("mu", "sigma2"))
    ## return
    return(list(theta = theta, vcov = invI, loglik = loglik, n = n))
    
  

我们仍然使用之前的数据进行测试:

set.seed(0); x <- rnorm(500)

## exact inference
fit <- fitnormal(x)

#$theta
#           mu        sigma2 
#-0.0002000485  0.9773790969 
#
#$vcov
#              mu    sigma2
#mu     0.9773791 0.0000000
#sigma2 0.0000000 0.9552699
#
#$loglik
#[1] -703.7491
#
#$n
#[1] 500

hist(x, prob = TRUE)
curve(dnorm(x, fit$theta[1], sqrt(fit$theta[2])), add = TRUE, col = 2)

数值方法也相当准确,只是方差协方差在对角线上没有精确的 0:

fitnormal(x, FALSE)

#$theta
#[1] -0.0002235315  0.9773732277
#
#$vcov
#                 mu       sigma2
#mu     9.773826e-01 5.359978e-06
#sigma2 5.359978e-06 1.910561e+00
#
#$loglik
#[1] -703.7491
#
#$n
#[1] 500

【讨论】:

让我开心,找到关于堆栈溢出的估算器理论,向你致敬【参考方案2】:

您似乎在混淆 MASS::fitdistrfitdistrplus::fitdist

MASS::fitdistr 返回类“fitdistr”的对象,并且没有用于此的绘图方法。所以你需要自己提取估计的参数并绘制估计的密度曲线。 我不知道你为什么加载包fitdistrplus,因为你的函数调用清楚地表明你正在使用MASS。无论如何,fitdistrplus 具有函数fitdist,它返回类“fitdist”的对象。该类有 plot 方法,但不适用于MASS 返回的“fitdistr”。

我将向您展示如何使用这两个包。

## reproducible example
set.seed(0); x <- rnorm(500)

使用MASS::fitdistr

没有可用的绘图方法,所以自己做。

library(MASS)
fit <- fitdistr(x, "normal")
class(fit)
# [1] "fitdistr"

para <- fit$estimate
#         mean            sd 
#-0.0002000485  0.9886248515 

hist(x, prob = TRUE)
curve(dnorm(x, para[1], para[2]), col = 2, add = TRUE)


使用fitdistrplus::fitdist

library(fitdistrplus)
FIT <- fitdist(x, "norm")    ## note: it is "norm" not "normal"
class(FIT)
# [1] "fitdist"

plot(FIT)    ## use method `plot.fitdist`

【讨论】:

值得一提的是,您可以通过mean(x)sd(x) 优化估计正态分布的参数... ??? 是的(虽然平均值的不确定性在封闭形式中也很容易 - SD 的不确定性有点麻烦) 如果是 Wald 标准错误,那么我认为 delta 方法应该有效:SE(f(x)) 约。 df/dx * SE(x) ... 在这种情况下 f(x) 是 sqrt(x),所以如果我做对了,SE(sd) = 0.5/sqrt(x)*SE(var)。 (如果你有基于似然比检验的区间,那么它们在变换下是不变的,所以只需取区间末端的平方根。)

以上是关于在 R 中拟合正态分布的主要内容,如果未能解决你的问题,请参考以下文章

如何将分布拟合到 R 中的样本数据?

将 Weibull 累积分布拟合到 R 中的质量传递数据

matlab中使用chi2gof函数对正态分布进行拟合后如何获得正态分布的参数μ与σ

R语言中一组数据服从威布尔分布,怎么判断拟合的效果

R进阶:缺失值的处理、拟合关系

怎么通过一组数据拟合出总体分布